Advances in Applied Clifford Algebras

, Volume 27, Issue 2, pp 1203–1232 | Cite as

Doing Euclidean Plane Geometry Using Projective Geometric Algebra

Article

Abstract

The article presents a new approach to euclidean plane geometry based on projective geometric algebra (PGA). It is designed for anyone with an interest in plane geometry, or who wishes to familiarize themselves with PGA. After a brief review of PGA, the article focuses on \(\mathbf {P}(\mathbb {R}^*_{2,0,1}) \), the PGA for euclidean plane geometry. It first explores the geometric product involving pairs and triples of basic elements (points and lines), establishing a wealth of fundamental metric and non-metric properties. It then applies the algebra to a variety of familiar topics in plane euclidean geometry and shows that it compares favorably with other approaches in regard to completeness, compactness, practicality, and elegance. The seamless integration of euclidean and ideal (or “infinite”) elements forms an essential and novel feature of the treatment. Numerous figures accompany the text. For readers with the requisite mathematical background, a self-contained coordinate-free introduction to the algebra is provided in an appendix.

Keywords

Euclidean geometry Plane geometry Geometric algebra Projective geometric algebra Degenerate signature Sandwich operator Orthogonal projection Isometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaschke, W.: Ebene Kinematik. Tuebner, Leibzig (1938)MATHGoogle Scholar
  2. 2.
    Calvet, R.G.: Treatise of Plane Geometry Through Geometric Algebra. TIMSAC (2007)Google Scholar
  3. 3.
    Clifford, W.K.: A preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 4, 381–395 (1873)Google Scholar
  4. 4.
    Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1(4), 350–358 (1878)Google Scholar
  5. 5.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, San Francisco (2007)Google Scholar
  6. 6.
    Emil, A.: Geometric Algebra, Volume 3 of Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers, Geneva (1957)Google Scholar
  7. 7.
    Gunn, Ch.: Geometry, Kinematics, and Rigid Body Mechanics in Cayley–Klein Geometries. PhD Thesis, Technical University Berlin (2011). http://opus.kobv.de/tuberlin/volltexte/2011/3322
  8. 8.
    Gunn, Ch.: On the homogeneous model of euclidean geometry. In: Dorst, L., Lasenby, J. (eds.) A Guide to Geometric Algebra in Practice, chapter 15, pp. 297–327. Springer, Berlin (2011)Google Scholar
  9. 9.
    Gunn, Ch.: On the homogeneous model of euclidean geometry: extended version. arxiv:1101.4542 (2011)
  10. 10.
    Gunn, Ch.: Geometric algebras for euclidean geometry. Adv. Appl. Clifford Algebras (2016). doi: 10.1007/s00006-016-0647-0
  11. 11.
    Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)CrossRefMATHGoogle Scholar
  12. 12.
    McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)Google Scholar
  13. 13.
    Selig, J.: Clifford algebra of points, lines, and planes. Robotica 18, 545–556 (2000)CrossRefGoogle Scholar
  14. 14.
    Selig, J.: Geometric Fundamentals of Robotics. Springer, Berlin (2005)MATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Institüt für Mathematik MA 8-3Technische Universität BerlinBerlinGermany
  2. 2.Raum+GegenraumFalkenseeGermany

Personalised recommendations