Advertisement

Advances in Applied Clifford Algebras

, Volume 27, Issue 3, pp 2035–2049 | Cite as

Motor Estimation using Heterogeneous Sets of Objects in Conformal Geometric Algebra

  • Lars TingelstadEmail author
  • Olav Egeland
Open Access
Article

Abstract

In this paper we present a novel method for nonlinear rigid body motion estimation from noisy data using heterogeneous sets of objects of the conformal model in geometric algebra. The rigid body motions are represented by motors. We employ state-of-the-art nonlinear optimization tools and compute gradients and Jacobian matrices using forward-mode automatic differentiation based on dual numbers. The use of automatic differentiation enables us to employ a wide range of cost functions in the estimation process. This includes cost functions for motor estimation using points, lines and planes. Moreover, we explain how these cost functions make it possible to use other geometric objects in the conformal model in the motor estimation process, e.g., spheres, circles and tangent vectors. Experimental results show that we are able to successfully estimate rigid body motions from synthetic datasets of heterogeneous sets of conformal objects including a combination of points, lines and planes.

Keywords

Rigid body motion estimation Geometric algebra Automatic differentiation Optimization 

Mathematics Subject Classification

Primary 15A66 Secondary 00A00 

References

  1. 1.
    Bartoli A., Sturm P.: The 3D line motion matrix and alignment of line reconstructions. Int. J. Comput. Vis. 57(3), 159–178 (2004)CrossRefGoogle Scholar
  2. 2.
    Bayro-Corrochano E., Daniilidis K., Sommer G.: Motor algebra for 3D kinematics: the case of the hand-eye calibration. J. Math. Imaging Vis. 13(2), 79–100 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clifford W.K.: Preliminary Sketch of Biquaternions. Proc. Lond. Math. Soc. 4, 361–395 (1873)MathSciNetGoogle Scholar
  4. 4.
    Colapinto, P: (2011) Versor: spatial computing with conformal geometric algebra. Master’s thesis, University of California at Santa Barbara. Available at: http://versor.mat.ucsb.edu
  5. 5.
    Daniilidis K.: Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 18(3), 286–298 (1999)CrossRefGoogle Scholar
  6. 6.
    Dorst, L.: The representation of rigid body motions in the conformal model of geometric algebra. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds) Human motion: understanding, modelling, capture, and animation, vol. 36 of Computational Imaging and Vision, pp. 507–529. Springer, Netherlands (2008)Google Scholar
  7. 7.
    Dorst L., Fontijne D., Mann S.: Geometric algebra for computer science: an object-oriented approach to geometry. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  8. 8.
    Egeland O., Dalsmo M., Sørdalen O.J.: Feedback control of a nonholonomic underwater vehicle with a constant desired configuration. Int. J. Rob. Res. 15(1), 24–35 (1996)CrossRefGoogle Scholar
  9. 9.
    Gebken C., Perwass C., Sommer G.: Parameter estimation from uncertain data in geometric algebra. Adv. Appl. Clifford Algebras. 18(3-4), 647–664 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hairer E., Lubich C., Wanner G.: Geometric numerical integration : structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics. Springer, Berlin (2006)zbMATHGoogle Scholar
  11. 11.
    Hestenes, D.: New foundations for classical mechanics, vol. 15 of fundamental theories of physics. Springer, Netherlands (1986)Google Scholar
  12. 12.
    Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus– a unified language for mathematics and physics, vol. 5 of fundamental theories of physics. Springer, Netherlands (1984)Google Scholar
  13. 13.
    Hoffmann, P.H.W.: A Hitchhiker’s guide to automatic differentiation. Num. Algorithms 1–37 (2015)Google Scholar
  14. 14.
    Lasenby J., Fitzgerald W.J., Lasenby A.N., Doran C.J.L.: New geometric methods for computer vision: an application to structure and motion estimation. Int. J. Comput. Vis. 26(3), 191–213 (1998)CrossRefGoogle Scholar
  15. 15.
    Li, H., Hestenes, D., Rockwood, A.,: Generalized Homogeneous Coordinates for Computational Geometry. In: Sommer, G. (ed) Geometric computing with Clifford Algebras, pp. 27–59. Springer, Berlin (2001)Google Scholar
  16. 16.
    Nocedal, J., Wright, S.J,: Numerical optimization. 2 edition, Springer, New York, (2006)Google Scholar
  17. 17.
    Perwass, C.: Applications of geometric algebra in computer vision—the geometry of multiple view tensors and 3d-reconstruction. PhD thesis, University of Cambridge (2000)Google Scholar
  18. 18.
    Rivera-Rovelo, J., Herold-García, S., Bayro-Corrochano, E.: Geometric hand-eye calibration for an endoscopic neurosurgery system. In: ICRA, pp. 1418–1423. IEEE (2008)Google Scholar
  19. 19.
    Rosenhahn B., Sommer G.: Pose estimation in conformal geometric algebra part I: the stratification of mathematical spaces. J. Math. Imaging Vis. 22(1), 27–48 (2005)CrossRefGoogle Scholar
  20. 20.
    Sameer, A., Keir, M., et al.: Ceres solver. http://ceres-solver.org
  21. 21.
    Sarkis M., Diepold K.: Camera-pose estimation via projective newton optimization on the manifold. IEEE Trans. Image Process., 21(4), 1729–1741 (2012)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Sommer, H., Pradalier, C., Furgale, P.: Automatic differentiation on differentiable manifolds as a tool for robotics. In: Int. Symp. on Robotics Research (ISRR) (2013)Google Scholar
  23. 23.
    Tingelstad, L.: GAME—Geometric Algebra Multivector Estimation. Available at: http://github.com/tingelst/game/ (2016)
  24. 24.
    Tingelstad, L., Egeland, O.: Automatic multivector differentiation and optimization. Submitted to Advances in Applied Clifford Algebras. Available at: http://folk.ntnu.no/tingelst/2016_aaca_tingelstad_egeland.pdf (2016)
  25. 25.
    Valkenburg, R., Alwesh, N.: Calibration of target positions using conformal geometric algebra. In: Dorst, L., Lasenby, J., (eds.) Guide to geometric algebra in practice, pp. 127–148. Springer, London (2011)Google Scholar
  26. 26.
    Valkenburg, R., Dorst, L.: Estimating motors from a variety of geometric data in 3D conformal geometric algebra. In: Dorst, L., Lasenby, J., (eds.) Guide to geometric algebra in practice, pp. 25–45. Springer, London (2011)Google Scholar
  27. 27.
    Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric algebra in computer vision and graphics. In: Li, H., Olver, P.J., Sommer, G. (eds.) Computer algebra and geometric algebra with applications, pp. 329–349. Springer, Berlin (2005)Google Scholar
  28. 28.
    Wen J.T.Y., Kreutz-Delgado K.: The attitude control problem. IEEE Trans. Autom. Control 36(10), 1148–1162 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Production and Quality Engineering, Faculty of Engineering Science and TechnologyNTNU, Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations