Advances in Applied Clifford Algebras

, Volume 27, Issue 1, pp 397–421 | Cite as

The E 8 Geometry from a Clifford Perspective

  • Pierre-Philippe DechantEmail author
Open Access


This paper considers the geometry of E 8 from a Clifford point of view in three complementary ways. Firstly, in earlier work, I had shown how to construct the four-dimensional exceptional root systems from the 3D root systems using Clifford techniques, by constructing them in the 4D even subalgebra of the 3D Clifford algebra; for instance the icosahedral root system H 3 gives rise to the largest (and therefore exceptional) non-crystallographic root system H 4. Arnold’s trinities and the McKay correspondence then hint that there might be an indirect connection between the icosahedron and E 8. Secondly, in a related construction, I have now made this connection explicit for the first time: in the 8D Clifford algebra of 3D space the 120 elements of the icosahedral group H 3 are doubly covered by 240 8-component objects, which endowed with a ‘reduced inner product’ are exactly the E 8 root system. It was previously known that E 8 splits into H 4-invariant subspaces, and we discuss the folding construction relating the two pictures. This folding is a partial version of the one used for the construction of the Coxeter plane, so thirdly we discuss the geometry of the Coxeter plane in a Clifford algebra framework. We advocate the complete factorisation of the Coxeter versor in the Clifford algebra into exponentials of bivectors describing rotations in orthogonal planes with the rotation angle giving the correct exponents, which gives much more geometric insight than the usual approach of complexification and search for complex eigenvalues. In particular, we explicitly find these factorisations for the 2D, 3D and 4D root systems, D 6 as well as E 8, whose Coxeter versor factorises as \({W = \exp(\frac{\pi}{30}B_C)\exp(\frac{11\pi}{30}B_2)\exp(\frac{7\pi}{30}B_3)\exp(\frac{13\pi}{30}B_4)}\) . This explicitly describes 30-fold rotations in 4 orthogonal planes with the correct exponents \({\{1, 7, 11, 13, 17, 19, 23, 29\}}\) arising completely algebraically from the factorisation.

Mathematics Subject Classification

52B10 52B12 52B15 15A66 20F55 17B22 14E16 


E8 Exceptional phenomena Clifford algebras Icosahedral symmetry Coxeter groups Root systems Spinors Coxeter plane Lie algebras Lie groups Representation theory Quantum algebras Trinities McKay correspondence 


  1. 1.
    Arnold, V.I.: Symplectization, complexification and mathematical trinities. In: Bierstone E, Khesin B, Khovanskii A, Marsden JE (eds.) The Arnoldfest, pp. 23–37. American Mathematical Society, Providence, RI (1999)Google Scholar
  2. 2.
    Arnold, V.I.: Mathematics: Frontiers and Perspectives. American Mathematical Society, Providence (2000)Google Scholar
  3. 3.
    Bourbaki N.: Groupes et algèbres de Lie, chapitres 4, 5 et 6. Masson, Paris (1981)zbMATHGoogle Scholar
  4. 4.
    Dechant P.-P., Boehm C., Twarock R.: Novel Kac–Moody-type affine extensions of non-crystallographic Coxeter groups. J. Phys. A: Math. Theor. 45(28), 285202 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dechant P.-P., Boehm C., Twarock R.: Affine extensions of non-crystallographic Coxeter groups induced by projection. J. Math. Phys. 54(9), 093508 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dechant, P.-P: Clifford algebra unveils a surprising geometric significance of quaternionic root systems of Coxeter groups. Adv. Appl. Clifford Algebras 23, 301–321 (2013). doi: 10.1007/s00006-012-0371-3
  7. 7.
    Dechant P.-P.: Platonic solids generate their four-dimensional analogues. Acta Crystallogr. Sect. A: Found. Crystallogr. 69(6), 592–602 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dechant P.-P.: A Clifford algebraic framework for Coxeter group theoretic computations. Adv. Appl. Clifford Algebras 24(1), 89–108 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dechant P.-P.: Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction. J. Phys. Conf. Ser. 597(1), 012027 (2015)CrossRefGoogle Scholar
  10. 10.
    Dechant, P.-P.: The birth of E 8 out of the spinors of the icosahedron. Proc. R. Soc. A, vol. 472, pp. 20150504. The Royal Society (2016)Google Scholar
  11. 11.
    Doran C., Hestenes D., Sommen F., Acker N.: Lie groups as spin groups. J. Math. Phys. 34(8), 3642–3669 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hestenes, D.: Point Groups and Space Groups in Geometric Algebra, pp. 3–34. Birkhäuser, Boston (2002)Google Scholar
  13. 13.
    Hestenes D., Holt J.W.: The crystallographic space groups in geometric algebra. J. Math. Phys. 48, 023514 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hitzer, E., Helmstetter, J., Abłamowicz, R.: Square roots of −1 in real Clifford algebras. In: Quaternion and Clifford Fourier Transforms and Wavelets, pp. 123–153. Springer, Berlin (2013)Google Scholar
  15. 15.
    Hitzer, E., Perwass, C.: Interactive 3D space group visualization with CLUCalc and the Clifford Geometric Algebra description of space groups. Adv. Appl. Clifford Algebras 20, 631–658 (2010). doi: 10.1007/s00006-010-0214-z
  16. 16.
    Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  17. 17.
    Koca, M., Al-Barwani, M., Koç, R.: Quaternionic root systems and subgroups of the Aut(F4). J. Math. Phys. 47(4), 043507 (2006)Google Scholar
  18. 18.
    Koca M., Koç R., Al-Barwani M.: Quaternionic roots of SO(8), SO(9), F 4 and the related Weyl groups. J. Math. Phys. 44, 3123–3140 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lusztig G.: Some examples of square integrable representations of semisimple p-adic groups. Trans. Am. Math. Soc. 277(2), 623–653 (1983)MathSciNetzbMATHGoogle Scholar
  20. 20.
    McKay, J.: Graphs, singularities, and finite groups. In: Proceedings of Symposia in Pure Mathematics, vol. 37, pp. 183–186 (1980)Google Scholar
  21. 21.
    Moody R.V., Patera J.: Quasicrystals and icosians. J. Phys. A: Math. Gen. 26(12), 2829 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shcherbak O.P.: Wavefronts and reflection groups. Russ. Math. Surv. 43(3), 149 (1988)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sekiguchi J., Yano T.: A note on the Coxeter group of type H 3. Sci. Rep. Saitama Univ. Ser. A 9, 33–44 (1979)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Wilson, R.A.: The geometry of the Hall–Janko group as a quaternionic reflection group. Geometriae Dedicata 20, 157–173 (1986). doi: 10.1007/BF00164397

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Departments of Mathematics and Biology, York Centre for Complex Systems AnalysisUniversity of YorkHeslingtonUK

Personalised recommendations