Advances in Applied Clifford Algebras

, Volume 25, Issue 3, pp 657–672 | Cite as

Best Pair of Two Skew Lines over the Octonions

  • P. Saraiva
  • P. D. Beites
  • J. Fernandes
  • C. Costa
  • José Vitória


This is a work on an application of octonions to Analytic Geometry. In the octonionic context, the orthogonal projection of a point onto a straight line is presented. Further, the best approximation pair of points of two skew lines over the octonions is studied.


Octonion equation of a line orthogonal projection inner product of octonions parallel and perpendicular octonions double vector cross product in \({\mathbb{R}^{7}}\) best approximation pair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Appelquist, A. Chodos and P. G. O. Freund, Modern Kaluza-Klein Theories. Addison-Wesley, California, Los Angeles, 1987.Google Scholar
  2. 2.
    Arkani-Hamed N., Dimopoulos S., Dvali G.R.: The Hierarchy Problem and New Dimensions at a Millimeter. Physics Letters B 429, 263–272 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Baez J.C.: The Octonions. Bulletin of the American Mathematical Society 39, 145–205 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brown R.B., Gray A.: Vector Cross Products. Commentarii Mathematici Helvetici 42, 222–236 (1967)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel and R. Remmert, Numbers. Springer, New York, 1995.Google Scholar
  6. 6.
    Jacobson N.: Composition Algebras and their Automorphisms. Rendiconti del Circolo Matematico di Palermo 7, 55–80 (1958)zbMATHCrossRefGoogle Scholar
  7. 7.
    P.-J. Laurent, Approximation et Optimisation. Hermann, Paris, 1972.Google Scholar
  8. 8.
    Leite F.S.: The Geometry of Hypercomplex Matrices. Linear and Multilinear Algebra 34, 123–132 (1993)zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Leite F.S., Crouch P.: The Triple Cross Product in \({\mathbb{R}^{7}}\). Reports on Mathematical Physics 39, 07–424 (1997)CrossRefGoogle Scholar
  10. 10.
    Luenberger D.G.: Optimization by Vector Space Methods. john Wiley and Sons, New York (1969)zbMATHGoogle Scholar
  11. 11.
    McDonald K. L.: Warping the Universal Extra Dimensions. Physical Review D 80, 24–38 (2009)CrossRefGoogle Scholar
  12. 12.
    Medina A.D., Medina A.D., Medina A.D.: Warped Radion Dark Matter. Journal of High Energy Physics 9, 1–46 (2011)Google Scholar
  13. 13.
    Okubo S.: Introduction to Octonion and other Non-Associative Algebras in Physics. Cambridge University Press, New York (2005)Google Scholar
  14. 14.
    Randall L., Sundrum R.: Large mass hierarchy from a small extra dimension. Physical Review Letters 83, 3370–3373 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Shaw R.: Vector cross products in n dimensions. International Journal of Mathematical Education in Science and Technology 18, 803–816 (1987)zbMATHCrossRefGoogle Scholar
  16. 16.
    J. P. Ward, Quaternions and Cayley Numbers. Kluwer, Dordrecht, 1997.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • P. Saraiva
    • 1
  • P. D. Beites
    • 2
  • J. Fernandes
    • 3
  • C. Costa
    • 4
  • José Vitória
    • 5
    • 6
  1. 1.Mathematics Group of the Faculty of Economics and CMUC, Centre for MathematicsUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Mathematics and CMA-UBI, Centre for Mathematics and ApplicationsUniversity of Beira InteriorCovilhãPortugal
  3. 3.CGUC – Geophysical Institute, Department of Mathematics and Astronomical ObservatoryUniversity of CoimbraCoimbraPortugal
  4. 4.Universidade de Trás-os-Montes e Alto Douro, UTAD and CIDTFF – Centro de Investigação “Didática e Tecnologia na Formação de Formadores” – Laboratório de Didática de Ciências e Tecnologia (UTAD)Vila RealPortugal
  5. 5.Department of MathematicsUniversity of CoimbraCoimbraPortugal
  6. 6.CIDMA – Center for Research and Development in Mathematics and ApplicationsUniversity of AveiroAveiroPortugal

Personalised recommendations