Advances in Applied Clifford Algebras

, Volume 24, Issue 2, pp 515–532 | Cite as

The Non-Degenerate Dupin Cyclides in the Space of Spheres Using Geometric Algebra

  • Lucie Druoton
  • Laurent Fuchs
  • Lionel GarnierEmail author
  • Rémi Langevin


Dupin cyclides are algebraic surfaces of degree 4 discovered by the French mathematician Pierre-Charles Dupin early in the 19th century and were introduced in CAD by R. Martin in 1982. A Dupin cyclide can be defined, in two different ways, as the envelope of a oneparameter family of oriented spheres. So, it is very interesting to model the Dupin cyclides in the space of spheres, space wherein each family of spheres can be seen as a conic curve. In this paper, we model the nondegenerate Dupin cyclides and the space of spheres using Conformal Geometric Algebra. This new approach permits us to benefit from the advantages of the use of Geometric Algebra.


Dupin cyclide space of spheres Conformal Geometric Algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Berger, M. Cole, and S. Levy, Geometry II. Number vol. 2 in Universitext (1979). Springer-Verlag, 1987.Google Scholar
  2. 2.
    G. Darboux, Leçons sur la Théorie Générale des Surfaces. Volume 1. Gauthier- Villars, 1887.Google Scholar
  3. 3.
    Leo Dorst, Daniel Fontijne, and Stephen Mann, Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry. Morgan Kauffmann Publishers, 2007.Google Scholar
  4. 4.
    Druoton L., Garnier L., Langevin R., Marcellier H., Besnard R.: Les cyclides de Dupin et l’espace des sphères. R.E.F.I.G. 5(1), 41–59 (2011)Google Scholar
  5. 5.
    C. P. Dupin, Application de Géométrie et de Méchanique la Marine, aux Ponts et Chaussées, etc. Bachelier, Paris, 1822.Google Scholar
  6. 6.
    Daniel Fontijne and Leo Dorst, GAviewer, interactive visualization software for geometric algebra. Downloadable at
  7. 7.
    A. R. Forsyth, Lecture on Differential Geometry of Curves and Surfaces. Cambridge University Press, 1912.Google Scholar
  8. 8.
    L. Garnier and L. Druoton, Constructions of principal patches of Dupin cyclides defined by constraints : four vertices on a given circle and two perpendicular tangents at a vertex. Birmingham, September 2013. XIV Mathematics od Surfaces.Google Scholar
  9. 9.
    Langevin R., Walczak P.G.: Conformal geometry of foliations. Geom Dedicata 132(5), 135–178 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. R. Martin, Principal patches for computational geometry. PhD thesis, Engineering Department, Cambridge University, 1982.Google Scholar
  11. 11.
    Pratt M. J.: Cyclides in computer aided geometric design. Computer Aided Geometric Design 7(1-4), 221–242 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Shene C. K.: Do blending and offsetting commute for Dupin cyclides. Computer Aided Geometric Design 17(9), 891–910 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Lucie Druoton
    • 1
    • 2
    • 3
  • Laurent Fuchs
    • 4
  • Lionel Garnier
    • 3
    Email author
  • Rémi Langevin
    • 2
  1. 1.C.E.A. DAM, ValducIs Sur TilleFrance
  2. 2.Institut de Mathématique de Bourgogne, UMR CNRS 5584 University of Burgundy, Faculté MirandeDijonFrance
  3. 3.LE2I, UMR CNRS 6306, University of Burgundy, faculté MirandeDijonFrance
  4. 4.XLIM-SIC, UMR CNRS 7252, University of PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations