Advances in Applied Clifford Algebras

, Volume 23, Issue 2, pp 377–404 | Cite as

Applications of Clifford’s Geometric Algebra

Article

Abstract

We survey the development of Clifford’s geometric algebra and some of its engineering applications during the last 15 years. Several recently developed applications and their merits are discussed in some detail. We thus hope to clearly demonstrate the benefit of developing problem solutions in a unified framework for algebra and geometry with the widest possible scope: from quantum computing and electromagnetism to satellite navigation, from neural computing to camera geometry, image processing, robotics and beyond.

Keywords

Hypercomplex algebra hypercomplex analysis geometry science engineering applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Abłamowicz, P. Lounesto, J.M. Parra (eds.), Clifford Algebras with Numeric and Symbolic Computations. Birkhauser, Basel 1996.Google Scholar
  2. 2.
    R. Abłamowicz, G. Sobczyk (eds.), Lectures on Clifford (Geometric) Algebras and Applications. Birkhauser, Basel 2004.Google Scholar
  3. 3.
    R. Abłamowicz (ed.), Clifford Algebras – Applications to Mathematics, Physics, and Engineering, PIM 34. Birkhauser, Basel 2004.Google Scholar
  4. 4.
    A. Aristidou and J. Lasenby, Inverse Kinematics Solutions Using Conformal Geometric Algebra. Chapter 3 of [27], pp. 47–62.Google Scholar
  5. 5.
    L. Avenau et al, A Framework for n-Dimensional Visibility Computations. Chapter 14 of [27], pp. 273–294.Google Scholar
  6. 6.
    T. Batard, M. Berthier, C. Saint-Jean, Clifford Fourier transform for color image processing. Chap. 8. in: [13], pp. 135–161.Google Scholar
  7. 7.
    T. Batard, M. Berthier, The Spinor Representation of Images. Accepted for: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), Birkhauser, Basel, 2013.Google Scholar
  8. 8.
    W.E. Baylis (ed.), Clifford (Geometric) Algebras, with Applications in Physics, Mathematics, and Engineering. Birkhauser, Basel 1996.Google Scholar
  9. 9.
    E.J. Bayro-Corrochano, G. Sobczyk (eds.), Geometric Algebra with Applications in Science and Engineering. Birkhauser, Basel, 2001.Google Scholar
  10. 10.
    E.J. Bayro-Corrochano, Geometric Computing for Perception Action Systems. Springer, Berlin, 2001.Google Scholar
  11. 11.
    E.J. Bayro-Corrochano, Geometric Neural Computing. IEEE Transac. on Neural Networks, Vol. 12, No. 5, Sep. 2001, pp. 968–986.Google Scholar
  12. 12.
    E.J. Bayro-Corrochano, Clifford Support Vector Machine. IEEE Transac. on Neural Networks, Vol. 21, No. 11, Nov. 2010, pp. 1731–1746.Google Scholar
  13. 13.
    E.J. Bayro-Corrochano, G. Scheuermann (eds.), Geometric Algebra Computing in Engineering and Computer Science. Springer, Berlin, 2010.Google Scholar
  14. 14.
    E.J. Bayro-Corrochano, Quaternion Atomic Function for Image Processing. Chapter 8 of [27], pp. 151–173.Google Scholar
  15. 15.
    H. De Bie, F. Sommen, Vector and bivector Fourier transforms in Clifford analysis. In 18th Int. Conf. on the Appl. of Comp. Sci. and Math. in Arch. and Civ. Eng., K. Gürlebeck, and C. Könke (eds.), Weimar, Germany, 07–09 July 2009, 11 pp.Google Scholar
  16. 16.
    H. De Bie, Y. Xu, On the Clifford-Fourier transform. Int. Math. Res. Nat. IMRN 22 (2011), pp. 5123–5163.Google Scholar
  17. 17.
    F. Brackx, B. De Knock, H. De Schepper, Generalized multidimensional Hilbert transforms in Clifford analysis. International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 98145, pp. 1–19, (2006), doi:10.1155/IJMMS/2006/98145.
  18. 18.
    F. Brackx, E. Hitzer, S.J. Sangwine, History of quaternion and Clifford Fourier transforms and wavelets. Accepted for: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), Birkhauser, Basel, 2013.Google Scholar
  19. 19.
    B. Braden, Picturing Functions of Complex Variables. The College Mathematics Journal, (1985).Google Scholar
  20. 20.
    B. Braden, The Vector Field Approach in Complex Analysis, Visualization in Teaching and Learning Mathematics. Math. Assoc. Am. (1991).Google Scholar
  21. 21.
    S. Buchholz, A Theory of Neural Computation with Clifford Algebras, PhD thesis, University of Kiel, 2005.Google Scholar
  22. 22.
    Buchholz S, Sommer G: On Clifford neurons and Clifford multi-layer perceptrons. In Neural Networks 21, 925–935 (2008)MATHCrossRefGoogle Scholar
  23. 23.
    T. Bülow, M. Felsberg, G. Sommer, Non-commutative hypercomplex Fourier transforms of multidimensional signals. Chapter 8 in [85].Google Scholar
  24. 24.
    L. Candy, J. Lasenby, Attitude and Position Tracking. Chapter 6 of [27], pp. 105–125.Google Scholar
  25. 25.
    L. Dorst, C. Doran, J. Lasenby (eds.), Applications of Geometric Algebra in Computer Science and Engineering. Birkhauser, Basel 2002.Google Scholar
  26. 26.
    L. Dorst, D. Fontijne, S. Mann, Geometric Algebra for Computer Science – An Object-Oriented Approach to Geometry, Morgan Kaufmann, San Francisco, 2007.Google Scholar
  27. 27.
    L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice. Springer, Berlin, 2011.Google Scholar
  28. 28.
    J. Ebling, G. Scheuermann, Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. Vol. 11, pp. 469–479 (2005).Google Scholar
  29. 29.
    T.A. Ell, Quaternionic-Fourier Transform for Analysis of Two-dimensional Linear Time-Invariant Partial Differential Systems. in Proceedings of the 32nd IEEE Conference on Decision and Control, December 15-17, 2 (1993), 1830– 1841.Google Scholar
  30. 30.
    M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. Vol. 49(2), pp. 3136–3144 (2007).Google Scholar
  31. 31.
    D. Fontijne, L. Dorst, Modeling 3D Euclidean Geometry. IEEE Computer Graphics and Applications, Volume 23 Issue 2, March 2003, pp. 68–78.Google Scholar
  32. 32.
    D. Fontijne, L. Dorst, Reconstructing Rotations and Rigid Body Motions from Exact Point Correspondences Through Reflections. Chapter 4 of [27], pp. 63–78.Google Scholar
  33. 33.
    R. Fueter, Analytische Theorie einer Quaternionenvariablen. Comment. Math. Helv. 4, pp. 9–20 (1932).Google Scholar
  34. 34.
    R. Fueter, Die Funktionentheorie der Differentialgleichung Δu und Δ Δu mit 4 Variablen. Comment. Math. Helv. 7, pp. 307–330 (1935).Google Scholar
  35. 35.
    P. Girard et al, Analytic video (2D+t) signals by Clifford Fourier transforms in multiquaternion Grassmann-Hamilton-Clifford algebras. Accepted for [56].Google Scholar
  36. 36.
    A. Görlitz, H. Seibert, D. Hildenbrand, Registration of Multichannel Images using Geometric Algebra. In V. Skala, E. Hitzer (eds.), Workshop Proceedings: Computer Graphics, Computer Vision and Mathematics 2010, Sep. 07– 10, 2010, Brno University of Technology, Brno, Czech Republic, published by UNION Agency, Plzen (2010), pp. 56–64.Google Scholar
  37. 37.
    H. Grassmann, translated by L. Kannenberg, A New Brach of Mathematics, The Ausdehnungslehre of 1844, and Other Works. Open Court, Chicago, 1995.Google Scholar
  38. 38.
    K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. MMIP 1, John Wiley & Sons, New York 1997.Google Scholar
  39. 39.
    K. Gürlebeck (ed.), Electronic conference proceedings of topical session No. 8 on Quaternion and Clifford FTs and wavelets, at ICCA9, Weimar, July 2011.Google Scholar
  40. 40.
    K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-dimensional Space. Birkhauser, Basel, 2008.Google Scholar
  41. 41.
    D. Hestenes, Space-Time Algebra. Gordon and Breach, New York, 1966.Google Scholar
  42. 42.
    D. Hestenes, Neural Networks. Vol. 7, No. 1 (1994), pp. 79–88.Google Scholar
  43. 43.
    D. Hestenes, New foundations for classical mechanics. Kluwer, Dordrecht, 1999.Google Scholar
  44. 44.
    D. Hestenes, R. Ziegler, Projective Geometry with Clifford Algebra. Acta Applicandae Mathematicae, Vol. 23 (1991), pp. 25–63.Google Scholar
  45. 45.
    D. Hildenbrand, Tutorial Geometric Computing in Computer Graphics using Conformal Geometric Algebra. Computers & Graphics 2005: Vol. 29, No. 5, Oct. 2005.Google Scholar
  46. 46.
    D. Hildenbrand, H. Lange, F. Stock, A. Koch, Efficient Inverse Kinematics Algorithm Based on Conformal Geometric Algebra Using Reconfigurable Hardware. In Braz, J. (ed.): GRAPP 2008, Third International Conference on Computer Graphics Theory and Applications. Proceedings: Funchal, Madeira, Portugal, January 22 – 25, 2008. Porto: INSTICC Press, pp. 300–307 (2008).Google Scholar
  47. 47.
    A. Hirose (Ed.), Complex-Valued Neural Networks.World Scientific Publishing, Singapore (2003).Google Scholar
  48. 48.
    A. Hirose, Complex-Valued Neural Networks. Series on Studies in Computational Intelligence, Vol.32, Springer-Verlag (2006).Google Scholar
  49. 49.
    E. Hitzer, B. Mawardi, Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2 (mod 4) and n = 3 (mod 4). In P. Angles (ed.), Adv. appl. Clifford alg. 18 (S3-4) (2008), pp. 715-736.Google Scholar
  50. 50.
    E. Hitzer, Quaternion Fourier Transform on Quaternion Fields and Generalizations. Adv. appl. Clifford alg. 17 (3) (2007), 497–517. E. Hitzer, Directional Uncertainty Principle for Quaternion Fourier Transforms, Adv. appl. Clifford alg. 20 (2) (2010), 271–284.Google Scholar
  51. 51.
    E. Hitzer, S. Sangwine, The orthogonal planes split of quaternions, in [39].Google Scholar
  52. 52.
    E. Hitzer, R. Abłamowicz, Geometric roots of −1 in Clifford algebras Cl(p, q) with pq ≤  4. Adv. appl. Clifford alg. 21 (1) (2010), pp. 121–144.Google Scholar
  53. 53.
    E. Hitzer, OPS-QFTs: A new type of quaternion Fourier transforms based on the orthogonal planes split with one or two general pure quaternions. Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conf. Proc. 1389 (2011), pp. 280–283; doi:10.1063/1.3636721
  54. 54.
    E. Hitzer, Introduction to Clifford’s geometric algebra. Journal of Japanese Society for Instrument and Control Engineers (SICE), Vol. 51, No. 4 (2012), pp. 338–350.Google Scholar
  55. 55.
    E. Hitzer, J. Helmstetter, R. Abłamowicz, Square roots of −1 in real Clifford algebras. Accepted for: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), Birkhauser, Basel, 2013. Preprints: http://arxiv.org/abs/1204.4576, http://www.tntech.edu/files/math/reports/TR_2012_3.pd.
  56. 56.
    E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics (TIM), Birkhauser, Basel, 2013.Google Scholar
  57. 57.
    M. Kobayashi, Three-Dimensional Associative Memory Using Exterior Product. IEE Trans. EIS Vol.124, No.1 (2004), pp.150-156 (In Japanese).Google Scholar
  58. 58.
    Y. Kuroe, Models of Clifford Recurrent Neural Networks and Their Dynamics. Proc. Int. Joint Conf. on Neural Networks (2011), pp.1035-1041.Google Scholar
  59. 59.
    Y. Kuroe, S. Tanigawa, H. Iima, Models of Hopfield-type Clifford Neural Networks and Their Energy Functions - Hyperbolic and Dual Valued Networks -. Proc. Int. Conf. Neural Information Processing, Lecture Notes in Computer Science 7062, Springer (2011), pp.560-569.Google Scholar
  60. 60.
    J. Lasenby et al, New Geometric Methods for Computer Vision: an application to structure and motion estimation, International Journal of Computer Vision. Vol. 26 (3) (1998), pp. 191-213.Google Scholar
  61. 61.
    J. Lasenby, A. Stevenson, Using Geometric Algebra for Optical Motion Capture. chp. 8 in [9], pp. 147-169.Google Scholar
  62. 62.
    H. Li, P.J. Olver, G. Sommer (eds.), Computer Algebra and Geometric Algebra with Applications. Proc. of IWMM & GIAW2004, LNCS 3519, Springer, Berlin 2005.Google Scholar
  63. 63.
    H. Li, Invariant Algebras and Geometric Reasoning. World Scientific, Singapore, 2008.Google Scholar
  64. 64.
    P. Lounesto, Clifford Algebras ans Spinors, 2nd ed., Cambridge University Press, UK, 2001.Google Scholar
  65. 65.
    J. Menneson, C. Saint-Jean, L. Mascarilla, Color Object Recognition Based on a Clifford Fourier Transform. Chapter 9 of [27], pp. 175–191.Google Scholar
  66. 66.
    D. Nelson (ed.), The Penguin Dictionary of Mathematics. Penguin Books, London, 1998.Google Scholar
  67. 67.
    T. Nitta, Complex-Valued Neural Network and Complex-Valued Back- Propagation Learning Algorithm. In: Advances in Imaging and Electron Physics, P.W. Hawkes (Ed.), Vol.152, pp.153-221, Elsevier, Amsterdam (2008).Google Scholar
  68. 68.
    T. Nitta (Ed.), Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Reference, Pennsylvania (2009).Google Scholar
  69. 69.
    T. Nitta, H. de Garis, A 3D Vector Version of the Back-Propagation Algorithm., Proc. Int. Joint Conf. Neural Networks, Vol. 2 (1992), pp. 511–516.Google Scholar
  70. 70.
    T. Nitta, A Back-Propagation Algorithm for Neural Networks Based on 3D Vector Product. Proc. IEEE/INNS Int. Joint Conf. Neural Networks, IJCNN’93- Nagoya, Oct. 25–29, Vol. 1 (1993), pp. 589–592.Google Scholar
  71. 71.
    T. Nitta, Ability of the 3D Vector Version of the Back-Propagation to Learn 3D Motion. Proc. INNS World Congress on Neural Networks, WCNN’94-San Diego, June 4-9, Vol. 3 (1994), pp. 262–267.Google Scholar
  72. 72.
    T. Nitta, Three-Dimensional Vector Valued Neural Network and its Generalization Ability. Neural Information Processing - Letters and Reviews, Vol. 10, No. 10 (2006), pp. 237–242.Google Scholar
  73. 73.
    T. Nitta, N-Dimensional Vector Neuron. Proc. IJCAI Workshop on Complex- Valued Neural Networks and Neuro-Computing: Novel Methods, Applications and Implementations (2007), pp. 2–7.Google Scholar
  74. 74.
    J.K. Pearson, D.L. Bisset, Back Propagation in a Clifford Algebra. Proc. Int. Conf. Artificial Neural Networks, Vol.2, I. Aleksander and J. Taylor (Ed.) (1992), pp. 413–416.Google Scholar
  75. 75.
    J.K. Pearson, D.L. Bisset, Neural Networks in the Clifford Domain. Proc. IEEE World Congress on Computational Intelligence(WCCI)/IEEE Int. Conf. Neural Networks(ICNN), Vol. 3 (1994), pp. 1465–1469.Google Scholar
  76. 76.
    C. Perwass, CLUCalc homepage. URL: http://www.CLUCalc.info
  77. 77.
    C. Perwass, Geometric Algebra with Applications in Engineering. Springer, Berlin, 2009.Google Scholar
  78. 78.
    A. Rockwood, S. Binderwala, A toy vector field based on geometric algebra. In Applications of Geometric Algebra in Computer Science and Engineering (L. Dorst, C. Doran and J. Lasenby, Eds.), Birkhäuser, Boston (2001), pp. 179–185.Google Scholar
  79. 79.
    S. J. Sangwine, Biquaternion (complexified quaternion) roots of −1. Advances in Applied Clifford Algebras, 16 (1) (2006), pp. 63–68.Google Scholar
  80. 80.
    Sangwine S.J.: Fourier transform of color images using quaternion, or hypercomplex, numbers. Electronic Letters, 32(21), 1979–1980 (1996)CrossRefGoogle Scholar
  81. 81.
    G. Scheuermann, H. Krüger, M. Menzel and A. Rockwood, Visualizing Nonlinear Vector Field Topology., IEEE Trans. Visualization and Computer Graphics, Vol.4, No.2 (1998), pp.109-116.Google Scholar
  82. 82.
    P. Serre, N. Anwer, J.X. Yang, On the Use of Conformal Geometric Algebra in Geometric Constraint Solving. Chapter 11 of [27], pp. 217–232.Google Scholar
  83. 83.
    F. Smach et al, Generalized Fourier descriptors with applications to objects recognition in SVM context. J. Math. Imaging Vis. Vol. 30(1) (2008), pp. 43– 71.Google Scholar
  84. 84.
    G. Sommer, Y.Y. Zeevi (eds.), Algebraic Frames for the Perception-Action Cycle. Proc. of AFPAC 2000, LNCS 1888, Springer, Heidelberg, 2000.Google Scholar
  85. 85.
    G. Sommer (ed.), Geometric computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics. Springer, Berlin, 2001.Google Scholar
  86. 86.
    J. Stolfi, Oriented Projective Geometry: A Framework for Geometric Computing. Academic Press, San Diego (1991).Google Scholar
  87. 87.
    R. Valkenburg, X. Lin, R. Klette, Self-calibration of target positions using geometric algebra. In Proc. of Image and Vision Computing New Zealand (2004), pp. 221–226.Google Scholar
  88. 88.
    R. Valkenburg and L. Dorst, Estimating Motors from a Variety of Geometric Data in 3D. Chapter 2 of [27], pp. 25–45.Google Scholar
  89. 89.
    R. Valkenburg, N. Alwesh, Calibration of Target Positions Using Conformal Geometric Algebra. Chapter 7 of [27], pp. 127–148.Google Scholar
  90. 90.
    V. N. Vapnik, The Nature of Statistical Learning Theory. Springer, New York, 1995.Google Scholar
  91. 91.
    D. Wood, G. Rawlins, S. Schuierer, Convexity, Visibility, and Orthogonal Polygons. In R. Melter, A. Rosenfeld, P. Bhattacharya (eds.), Vision Geometry, Proc. of an AMS special session, October 20-21, 1989, Contemporary Mathematics, Vol. 119, AMS, Providence, RI, 1991, pp. 225–237. Wikipedia (04 January 2011): Visibility, http://en.wikipedia.org/wiki/Visibility_(geometry)

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.College of Liberal Arts, Department of Material ScienceInternational Christian UniversityTokyoJapan
  2. 2.Mathematical Neuroinformatics GroupHuman Technology Research Institute, National Institute of Advanced Industrial Science and TechnologyIbarakiJapan
  3. 3.Department of Information ScienceKyoto Institute of TechnologyKyotoJapan

Personalised recommendations