Advances in Applied Clifford Algebras

, Volume 22, Issue 2, pp 313–319 | Cite as

Approximation by Quaternion q-Bernstein Polynomials, q > 1

  • Sorin G. Gal


Defining for q > 1 the q-Bernstein polynomials of degree n of a quaternion variable, attached to a function f defined on a ball in the field of quaternions, the order of approximation \({\frac{1} {q^n}}\) is obtained when f is in some classes of analytic functions in the sense of Weierstrass. The result extends that in the case of approximation of analytic functions of a complex variable in disks, by q-Bernstein polynomials of complex variable.


Quaternion q-Bernstein-polynomials of quaternion variable order of approximation analytic functions in Weierstrass sense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gal S.G.: Approximation by Complex Bernstein and Convolution-Type Operators. World Scientific Publ. Co, Singapore-Hong Kong-London-New Jersey (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Mejlihzon A.Z.: On the notion of monogenic quaternions (In Russian). Dokl. Akad. Nauk SSSR 59, 431–434 (1948)Google Scholar
  3. 3.
    Gr. C. Moisil, Sur les quaternions monogènes. Bull. Sci. Math. (Paris), LV(1931), 168–174.Google Scholar
  4. 4.
    Ostrovska S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123, 232–255 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Phillips G. M.: Bernstein polynomials based on the q-integers. Annals Numer. Math 4, 511–518 (1997)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of OradeaOradeaRomania

Personalised recommendations