Advances in Applied Clifford Algebras

, Volume 22, Issue 1, pp 203–242 | Cite as

A Generalization of the Lorentz Ether to Gravity with General-Relativistic Limit

  • I. SchmelzerEmail author


Does relativistic gravity provide arguments against the existence of a preferred frame? Our answer is negative. We define a viable theory of gravity with preferred frame. In this theory, the EEP holds exactly, and the Einstein equations of GR limit are obtained in a natural limit. Despite some remarkable differences (stable “frozen stars” instead of black holes, a “big bounce” instead of the big bang, exclusion of nontrivial topologies and closed causal loops, and a preference for a flat universe) the theory is viable.

The equations of the theory are derived from simple axioms about some fundamental condensed matter (the generalized Lorentz ether), so that, in particular, the EEP is not postulated but derived.

The theory is compatible with the condensed matter interpretation for the fermions and gauge fields of the standard model.


Gravity alternative theories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashtekar A.: New Variables for Classical and Quantum–Gravity. Phys. Rev. Lett 57, 2244–2247 (1986)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Aspect A., Dalibard J., Roger G.: Experimental Test of Bell’s Inequalities Using Time-Varying Analysers. Phys. Rev. Lett 49, 1801–1807 (1982)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Arnowitt R., Deser S., Misner C.: Quantum Theory of Gravitation-General Formulation and Linearized Theory. Phys. Rev 113, 745–750 (1959)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Anderson J.L.: Principles of Relativity Physics. Academic Press, New York (1967)Google Scholar
  5. 5.
    Barcelo C., Liberati S., Visser M.: Analog Gravity from Field Theory Normal Modes? Class. Quant. Grav 18, 3595–3610 (2001) [arXiv:gr-qc/0104001]MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    C. Barcelo, S. Liberati, M. Visser, Analogue Gravity. Living Rev. Rel. 8, 12 (2005). [] [arXiv:gr-qc/0505065]
  7. 7.
    Bell J. S.: On the Einstein-Podolsky-Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  8. 8.
    J. S. Bell, in P.C.W. Davies and J.R. Brown. (Eds.), The Ghost in the Atom. Cambridge University Press, Cambridge, 1986, pp. 45–57.Google Scholar
  9. 9.
    Broer L.F.J., Kobussen J.A.: Conversion from Material to Local Coordinates as a Canonical Transformation. Appl. Sci. Res 29, 419–429 (1974)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Bohm D.: A Suggested Interpretation of Quantum Theory in Terms of Hidden Variables. Phys. Rev 85, 166–179 (1952)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Bohm D., Hiley B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)Google Scholar
  12. 12.
    Butterfield J., Isham C. J.: Spacetime and the Philosophical Challenge of Quantum Gravity. In: Callender, C., Huggett, N. (eds) Physics Meets Philosophy at the Planck Scale., pp. 33–89. Cambridge University Press, Cambridge (2000) [arXiv:gr-qc/9903072]Google Scholar
  13. 13.
    Choquet-Bruhat Y.: Theoreme D’Existence Pour Certain Systemes D’Equations Aux Derivees Partielles Non Lineaires. Acta Math 88, 141–225 (1952)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Deser, Gen. Rel. and Grav 1, Self-interaction and Gauge Invariance. 9–18 (1970).Google Scholar
  15. 15.
    D. Dürr, S. Goldstein, N. Zanghi, Bohmian Mechanics as the Foundation of Quantum Mechanics. In J.T. Cushing, A. Fine, and S. Goldstein (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal, Boston Studies in the Philosophy of Science 184, 21–44 (1996). [arXiv:quant-ph/9511016]Google Scholar
  16. 16.
    Einstein A., Podolsky B., Rosen N.: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev 47, 777–780 (1935)zbMATHCrossRefGoogle Scholar
  17. 17.
    R. P. Feynman, Lectures on Gravitation. Calif. Inst. of Technol. 1963., Notes prepared by F. B. Morimigo and W; G.Wagner, edited by B. Hatfiled, Addison- Wesley Publ. Co., Reading, MA, 1995.Google Scholar
  18. 18.
    Fock V.: Theorie von Raum, Zeit und Gravitation. Akademie-Verlag, Berlin (1960)zbMATHGoogle Scholar
  19. 19.
    D. E. Groom et al., 2000 Rev. of Particle Physics, The European Physical Journal C15 (2000) 1, available on the PDG WWW pages (URL:
  20. 20.
    Jacobson T.: Thermodynamics of Spacetime: the Einstein Equation of State. Phys. Rev. Lett 75, 1260–1263 (1965) [arXiv:gr-qc/9504004]ADSCrossRefGoogle Scholar
  21. 21.
    Jacobson T.: Spontaneously Broken Lorentz Symmetry and Gravity. Phys. Rev D, 024028, 024028 (2001) [arXiv:gr-qc/0007031]ADSCrossRefGoogle Scholar
  22. 22.
    Kretschmann E.: Über den Physikalischen Sinn der Relativitätspostulate. A. Einsteins Neue und seine Ursprüngliche Relativitätstheorie. Ann. Phys 53, 575–614 (1917)zbMATHGoogle Scholar
  23. 23.
    Kuchar K.V., Torre C.G.: Harmonic Gauge in Canonical Gravity. Phys. Rev. D 44, 3116–3123 (1991)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    LogunovA.A. Loskutov Yu, LogunovA.A. Loskutov Yu: Contradictory Character of General Relativity-The Relativistic Theory of Gravitation. Theor. Math. Phys 67, 425–433 (1986)CrossRefGoogle Scholar
  25. 25.
    A. A. Logunov, Relativistic Theory of Gravity. (In russ.) Nauka, 2006.Google Scholar
  26. 26.
    Logunov A.A.: The Relativistic Theory of Gravitation and New Notions of Space-Time. Theor. Math. Phys 70, 1–10 (1987)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, The Upper Limit on the Graviton Mass. [arXiv:hep-th/9711147]Google Scholar
  28. 28.
    Vlasov A.A., Logunov A.A.: Bouncing From the Schwarzschild Sphere in the Relativistic Theory of Gravitation with Nonzero Graviton Mass. Theor. Math. Phys 78, 229–233 (1989)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Logunov A.A., Mestvirishvili M.A., Chugreev Yu.V.: Graviton Mass and Evolution in a Frideman Universe. Theor. Math. Phys 74, 1–10 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    C. Malyshev, The T(3)-Gauge Model, the Einstein-Like Gauge Equation, and Volterra Dislocations with Modified Asymptotics. Ann. Phys. (NewYork) 286 (2000), 249–247. [arXiv:cond-mat/9901316]Google Scholar
  31. 31.
    K. Menou, E. Quataert, R. Narayan, Astrophysical Evidence for Blackhole Event Horizons. In N. Dadhich and J. Narlikar, Gravitation and Relativity and Relativity: At the Turn of the Millenium, pp. 43–66, Proceedings of the GR-15 Conference, Inter-University Centre for Astronomy and Astrophysics, Pune, India 1997. [arXiv:gr-qc/9803057]Google Scholar
  32. 32.
    Misner C., Thorne K., Wheeler J.: Gravitation. Freedman, San Francisco (1973)Google Scholar
  33. 33.
    Nelson E.: Derivation of the Schroedinger Equation from Newtonian Mechanics. Phys. Rev 150, 1079–1085 (1966)ADSCrossRefGoogle Scholar
  34. 34.
    J. R. Primack, Dark Matter and Structure Formation in the Universe. In A. Dekel and J. P. Ostriker (eds.), Formation of Structures in the Universe, chapter 1, Proceedings of the Jerusalem Winter School 1996, Cambridge University Press, Cambridge, 1999. [arXiv:astro-ph/9707285]Google Scholar
  35. 35.
    Polchinski J.: String Theory. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  36. 36.
    Riess A.G. et al.: The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration. Astrophys. J 560, 49–71 (2001) [arXiv:astro-ph/0104455]ADSCrossRefGoogle Scholar
  37. 37.
    Rosen N.: Flat-Space Metric in General Relativity. Ann. of Phys (New York) 22, 1–11 (1963)ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Rosu H.C.: Hawking-like Effects and Unruh-like Effects: Toward Experiments? Grav. Cosmol 7, 1–17 (2001) [arXiv:gr-qc/9406012]MathSciNetzbMATHGoogle Scholar
  39. 39.
    A. D. Sakharov, Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Sov. Phys. Doklady 12 (1968), 1040–1041; Reprinted in Gen. Rel. Grav. 32 (2000), 365–366.Google Scholar
  40. 40.
    I. Schmelzer, General Ether Theory – A Metric Theory of Gravity with Condensed Matter Interpretation. Proc. of the XXII International Workshop on High Energy Physics and Field theory. Protvino, June 1999, 23–25.Google Scholar
  41. 41.
    Schmelzer I.: A Condensed Matter Interpretation of SM Fermions and Gauge Fields. Found. Phys 39, 73–107 (2009) [arXiv:0908.0591]MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Unruh W.G.: Experimental Black-Hole Evaporation. Phys. Rev Lett 46, 1351–1353 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    M. Visser, Acoustic Black Holes: Horizons, Ergospheres, and Hawking Radiation. Class.Quant.Grav. 15 (1998), 1767–179. [arXiv:gr-qc/9712010]Google Scholar
  44. 44.
    Volovik G.E.: Induced Gravity in Superfluid 3He. J. Low. Temp. Phys 113, 667–680 (1998) [arXiv:cond-mat/9806010]CrossRefGoogle Scholar
  45. 45.
    Volovik G. E.: Field theory in Superfluid 3He: What are the lessons for particle physics, gravity and high-temperature superconductivity? Proc. Nat. Acad. Sci 96, 6042–6047 (1999) [arXiv:cond-mat/9812381]ADSCrossRefGoogle Scholar
  46. 46.
    H.-J. Wagner, Das inverse Problem der Lagrangeschen Feldtheorie in Hydrodynamik, Plasmaphysik und hydrodynamischem Bild der Quantenmechanik. Universit ät Paderborn, 1997.Google Scholar
  47. 47.
    Weinberg S.: Photons and Gravitons in Perturbation Theory-Derivation of Maxwell and Einstein Equations. Phys. Rev 138, 988–1002 (1965)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    S. Weinberg, What is Quantum Field Theory, and What Did We Think It Is? [arXiv:hep-th/9702027]Google Scholar
  49. 49.
    C.M. Will, The Confrontation Between General Relativity and Experiment. [arXiv:gr-qc/9811036]Google Scholar
  50. 50.
    Woit P.: Not Even Wrong. Jonathan Cape, London (2006)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations