Advances in Applied Clifford Algebras

, Volume 22, Issue 1, pp 79–85 | Cite as

Some Comments on Projective Quadrics Subordinate to Pseudo-Hermitian Spaces

  • Arkadiusz JadczykEmail author


We study in some detail the structure of the projective quadric Q′ obtained by taking the quotient of the isotropic cone in a standard pseudo-hermitian space H p,q with respect to the positive real numbers \({\mathbb R^{+}}\) and, further, by taking the quotient \({\tilde Q = Q^\prime /U(1)}\). The case of signature (1, 1) serves as an illustration. is studied as a compactification of \({\mathbb R \times H_{p-1,q-1}}\)


Projective quadrics pseudo-hermitian space compactification conformal structure degenerate metric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pierre Anglès, Conformal Groups in Geometry and Spin Structures. Birkhäuser, Progress in Mathematical Physics, Vol. 50 (2008).Google Scholar
  2. 2.
    Pierre Anglès, Study of some fundamental projective quadrics associated with a standard pseudo-Hermitian space H p,q. Adv. appl. Clifford alg. Online DOI: 10.1007/s00006-010-0257-1.
  3. 3.
    Kopczyński W., Woronowicz L.S.: A geometrical approach to the twistor formalism. Rep. Math. Phys. Vol 2, pp. 35–51 (1971)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Nicolas Bourbaki, Éléments de Mathématique. Algèbre, Chapitre 9, Springer (2007). First edition: Herman, Paris (1959).Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Center CAIROS, Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations