Advances in Applied Clifford Algebras

, Volume 21, Issue 3, pp 607–636

Fundamental Representations and Algebraic Properties of Biquaternions or Complexified Quaternions

  • Stephen J. Sangwine
  • Todd A. Ell
  • Nicolas Le Bihan
Article

Abstract

The fundamental properties of biquaternions (complexified quaternions) are presented including several different representations, some of them new, and definitions of fundamental operations such as the scalar and vector parts, conjugates, semi-norms, polar forms, and inner products. The notation is consistent throughout, even between representations, providing a clear account of the many ways in which the component parts of a biquaternion may be manipulated algebraically.

Mathematics Subject Classification (2010)

Primary 11R52 Secondary 15A66 

Keywords

Quaternion biquaternion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abłamowicz R., Fauser B., Podlaski K., Rembielinski J.: Idempotents of Clifford algebras. Czechoslovak Journal of Physics 53(11), 949–954 (2003)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Altmann Simon L.: Rotations, Quaternions, and Double Groups. Oxford University Press, Oxford (1986)MATHGoogle Scholar
  3. 3.
    Benno Artmann, The concept of number : from quaternions to monads and topological fields. Ellis Horwood series in mathematics and its applications. Ellis Horwood, Halsted, Chichester, 1988. Translation of: Der Zahlbegriff, Gottigen: Vandenhoeck & Rupprecht, 1983. Translated with additional exercises and material by H.B. Griffiths.Google Scholar
  4. 4.
    Borowski, E.J., Borwein, J.M., editors: Collins Dictionary of Mathematics. HarperCollins, Glasgow, 2nd edition, (2002)Google Scholar
  5. 5.
    Bouvier, Alain, George, Michel, Le Lionnais, Franois, editors: Dictionnaire des Mathmatiques. Quadrige/Puf, Paris, 2e edition, (2005)Google Scholar
  6. 6.
    Clifford William K.: Preliminary sketch of biquaternions. Proc. London Math. Soc. s1-4(1), 381–395 (1871)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coxeter H.S.M.: Quaternions and reflections. American Mathematical Monthly 53(3), 136–146 (1946)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Stefano de Leo and Waldyr A. Rodrigues, Jr. Quaternionic electron theory: Geometry, algebra, and Dirac’s spinors. International Journal of Theoretical Physics, 37 (6) (1998), 1707–1720. ISSN 0020-7748 (Print) 1572-9575 (Online).Google Scholar
  9. 9.
    T. A. Ell and S. J. Sangwine. Quaternion involutions. Preprint: http://www.arxiv.org/abs/math.RA/0506034, June 2005.
  10. 10.
    Ell T.A., Sangwine S.J.: Quaternion involutions and anti-involutions. Computers and Mathematics with Applications 53(1), 137–143 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Todd A. Ell and Stephen J. Sangwine, Linear quaternion systems Toolbox for Matlab®. http://lqstfm.sourceforge.net/, 2007Software library, licensed under the GNU General Public License.
  12. 12.
    Andre Gsponer and Jean-Pierre Hurni, Lanczos – Einstein – Petiau: From Dirac’s equation to nonlinear wave mechanics. Preprint, August 2005. URL http://www.arxiv.org/abs/physics/0508036.
  13. 13.
    Gürlebeck Klaus, Sprössig Wolfgang: Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley, Chichester (1997)MATHGoogle Scholar
  14. 14.
    H. Halberstam and R. E. Ingram, editors, The Mathematical Papers of Sir William Rowan Hamilton, volume III Algebra. Cambridge University Press, Cambridge, 1967.Google Scholar
  15. 15.
    Hamilton W.R.: On a new species of imaginary quantities connected with the theory of quaternions. Proceedings of the Royal Irish Academy 2, 424–434 (1844)Google Scholar
  16. 16.
    Hamilton W.R.: Researches respecting quaternions. Transactions of the Royal Irish Academy 21, 199–296 (1848)Google Scholar
  17. 17.
    W. R. Hamilton, Lectures on Quaternions. Hodges and Smith, Dublin, 1853. Available online at Cornell University Library: http://historical.library.cornell.edu/math/.
  18. 18.
    Hamilton W.R.: Elements of Quaternions. Longmans, Green and Co., London (1866)Google Scholar
  19. 19.
    W. R. Hamilton, On the geometrical interpretation of some results obtained by calculation with biquaternions. In Halberstam and Ingram [14], chapter 35, pages 424–5. First published in Proceedings of the Royal Irish Academy, 1853.Google Scholar
  20. 20.
    W. R. Hamilton, On a new species of imaginary quantities connected with the theory of quaternions. In Halberstam and Ingram [14], chapter 5, pages 111–116. First published as [15].Google Scholar
  21. 21.
    W. R. Hamilton, Researches respecting quaternions. First series (1843). In Halberstam and Ingram [14],chapter 7, pages 159–226. First published as [16].Google Scholar
  22. 22.
    W. R. Hamilton, On quaternions. In Halberstam and Ingram [14], chapter 8, pages 227–297. First published in various articles in Philosophical Magazine, 1844–1850.Google Scholar
  23. 23.
    Hestenes David, Sobczyk Garret: Clifford Algebra to Geometric Calculus. D. Reidel Publishing Company, Dordrecht (1984)MATHCrossRefGoogle Scholar
  24. 24.
    David Hestenes, Hongbo Li, and Alyn Rockwood, New algebraic tools for classical geometry. In Sommer [37], chapter 1, pages 3–26.Google Scholar
  25. 25.
    Eckhard Hitzer and Rafał Abłamowicz. Geometric roots of −1 in Clifford algebras Cℓ p,q with p + q ≤ 4. Preprint: http://arxiv.org/abs/arxiv:0905.3019, May 2009.
  26. 26.
    Kantor I.L., Solodnikov A.S.: Hypercomplex numbers, an elementary introduction to algebras. Springer-Verlag, New York (1989)MATHGoogle Scholar
  27. 27.
    Kelland Philip, Tait Peter Guthrie: Introduction to quaternions. Macmillan, London, 3rd edition, (1904)Google Scholar
  28. 28.
    Kuipers J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton, New Jersey (1999)MATHGoogle Scholar
  29. 29.
    Lasenby Joan, Lasenby Anthony N., Doran Chris J. L.: A unified mathematical language for physics and engineering in the 21st century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 358, 21–39 (2000)MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    Li H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)CrossRefMATHGoogle Scholar
  31. 31.
    Nelson, David, editor: The Penguin Dictionary of Mathematics. Penguin Books, London, third edition, (2003)Google Scholar
  32. 32.
    Porteous I.R.: Topological Geometry. Cambridge University Press, Cambridge (1981)CrossRefMATHGoogle Scholar
  33. 33.
    Sangwine S.J.: Biquaternion (complexified quaternion) roots of −1. Adv. appl. Clifford alg. 16(1), 63–68 (2006)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Sangwine S.J., Alfsmann Daniel: Determination of the biquaternion divisors of zero, including the idempotents and nilpotents. Adv. appl. Clifford alg. 20(2), 401–410 (2010)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Sangwine S.J., Le Bihan N.: Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. appl. Clifford alg. 20(1), 111–120 (2010)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Stephen J. Sangwine and Nicolas Le Bihan, Quaternion Toolbox for Matlab®. http://qtfm.sourceforge.net/, 2005. Software library, licensed under the GNU General Public License.
  37. 37.
    Sommer, G., editor: Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics. Springer-Verlag, London, UK (2001)MATHGoogle Scholar
  38. 38.
    Sudbery A.: Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society 85(2), 199–225 (1979)MathSciNetADSCrossRefMATHGoogle Scholar
  39. 39.
    Jaap Suter, Geometric algebra primer. Self-published on personal website: http://www.jaapsuter.com/data/2003-3-12-geometric-algebra/geometric-algebra.pdf
  40. 40.
    J. L. Synge, Quaternions, Lorentz transformations, and the Conway-Dirac- Eddington matrices. Communications of the Dublin Institute for Advanced Studies, Series A 21, Dublin Institute for Advanced Studies, Dublin, 1972.Google Scholar
  41. 41.
    P. G. Tait, Sketch of the analytical theory of quaternions. In An elementary treatise on Quaternions, chapter VI, pages 146–159. Cambridge University Press, third edition, 1890. Chapter by ‘Prof Cayley’ (Arthur Cayley).Google Scholar
  42. 42.
    J. P. Ward, Quaternions and Cayley Numbers: Algebra and Applications. volume 403 of Mathematics and Its Applications. Kluwer, Dordrecht, 1997.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Stephen J. Sangwine
    • 1
  • Todd A. Ell
    • 2
  • Nicolas Le Bihan
    • 3
  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUnited Kingdom
  2. 2.SavageUSA
  3. 3.GIPSA-Lab, Département Images et Signal, Domaine UniversitaireSaint Martin d’Hères cedexFrance

Personalised recommendations