Advances in Applied Clifford Algebras

, Volume 21, Issue 1, pp 103–119

Some Paradoxes in Special Relativity and the Resolutions



The special theory of relativity is the foundation of modern physics, but its unusual postulate of invariant vacuum speed of light results in a number of plausible paradoxes. This situation leads to radical criticisms and suspicions against the theory of relativity. In this paper, from the perspective that the relativity is nothing but a geometry, we give a uniform resolution to some famous and typical paradoxes such as the ladder paradox, the Ehrenfest’s rotational disc paradox. The discussion shows that all the paradoxes are caused by misinterpretation of concepts. We misused the global simultaneity and the principle of relativity. As a geometry of Minkowski space-time, special relativity can never result in a logical contradiction.


03.30.+p 01.70.+w 01.55.+b 02.40.Dr 


Clifford algebra Minkowski space-time paradox simultaneity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wikipedia contributors, Principle of relativity. Wikipedia, The Free Encyclopedia,
  2. 2.
    Ellis G., Uzan J.-Ph.: ‘c’ is the speed of light, isn’t it?. Am.J.Phys. 73, 240–247 (2005) arXiv:gr-qc/0305099ADSCrossRefGoogle Scholar
  3. 3.
    Wikipedia contributors, Twin paradox. Wikipedia, The Free Encyclopedia,
  4. 4.
    Wikipedia contributors, Bell’s spaceship paradox. Wikipedia, The Free Encyclopedia,
  5. 5.
    Wikipedia contributors, Ladder paradox. Wikipedia, The Free Encyclopedia, (Feb 2009).
  6. 6.
    Wikipedia contributors, Ehrenfest paradox, Wikipedia, The Free Encyclopedia, (Feb 2009).
  7. 7.
    Anatoli Vankov, Mass, Time, and Clock (Twin) Paradox in Relativity Theory. Physics/0603168.Google Scholar
  8. 8.
    Y. Q. Gu, Local Lorentz Transformation and “Lorentz Violation”. arXiv:0708.1643.Google Scholar
  9. 9.
    Y. Q. Gu, Some Properties of the Spinor Soliton. Adv in Appl. Clif. Alg. 8 (1) (1998), 17-29.
  10. 10.
    D. Hestenes, Geometry of The Dirac Theory. Adv. Appl. Clif. Alg. 2 (2) (1992), 215-248.
  11. 11.
    J. Keller, Adv. Appl. Cliff. Alg. 3 (2) (1993), 147-200.
  12. 12.
    Crawford J.P.: J. Math. Phys. 26, 1439–1441 (1985)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Boudet R.: J. Math. Phys. 26, 718–724 (1985)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Y. Q. Gu, Advances in Applied Clifford Algebras 7 (1) (1997), 13-24., arXiv:hep-th/0610189
  15. 15.
    Y. Q. Gu, Some Subtle Concepts in Fundamental Physics. arXiv:0901.0309v1Google Scholar
  16. 16.
    Wikipedia contributors, Rietdijk-Putnam argument. Wikipedia, The Free Encyclopedia,
  17. 17.
    Bell J.S.: Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  18. 18.
    Dewan E., Beran M.: Note on stress effects due to relativistic contraction. Am.J.Phys. 27(7), 517–518 (1959)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Q. Gu, New Approach to N-body Relativistic Quantum Mechanics. IJMPA Vol. 22 (No.11) (2007), 2007-2019. hep-th/0610153.Google Scholar
  20. 20.
    G. F. R. Ellis, ON THE FLOW OF TIME. arXiv:0812.0240.Google Scholar
  21. 21.
    Wikipedia contributors, Supplee’s paradox. Wikipedia, The Free Encyclopedia,
  22. 22.
    Robert D. Klauber, Relativity in Rotating Frames, Chapter 6, Toward a Consistent Theory of Relativistic Rotation. Kluwer Academic Publishers (2004), 103-137. arXiv:physics/0404027.Google Scholar
  23. 23.
    Wikipedia contributors, Born coordinates. Wikipedia, The Free Encyclopedia, (Feb 2009).
  24. 24.
    Michael Weiss, The Rigid Rotating Disk in Relativity. The sci.physics FAQ (1995),
  25. 25.
    Y. Q. Gu, The Vierbein Formalism and Energy-Momentum Tensor of Spinors. arXiv:gr-qc/0612106Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.School of Mathematical ScienceFudan UniversityShanghaiChina

Personalised recommendations