Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Clifford Algebras in Physics


We study briefly some properties of real Clifford algebras and identify them as matrix algebras. We then show that the representation space on which Clifford algebras act are spinors and we study in details matrix representations. The precise structure of these matrices gives rise to the type of spinors one is able to construct in a given space-time dimension: Majorana or Weyl. Properties of spinors are also studied. We finally show how Clifford algebras enable us to construct supersymmetric extensions of the Poincaré algebra. A special attention to the four, ten and eleven-dimensional space-times is given. We then study the representations of the considered supersymmetric algebras and show that representation spaces contain an equal number of bosons and fermions. Supersymmetry turns out to be a symmetry which mixes non-trivially the bosons and the fermions since one multiplet contains bosons and fermions together. We also show how supersymmetry in four and ten dimensions are related to eleven dimensional supersymmetry by compactification or dimensional reduction.

This is a preview of subscription content, log in to check access.

Author information

Correspondence to Michel Rausch de Traubenberg.

Additional information

Received: January, 2006. Accepted: July, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Traubenberg, M.R. Clifford Algebras in Physics. AACA 19, 869 (2009).

Download citation

Mathematics Subject Classification (2000).

  • 15A66
  • 15A75
  • 17B70
  • 17B81
  • 81T60


  • Clifford algebras
  • Dirac Γ-matrices
  • spinors
  • supersymmetry