Advertisement

Type III Interferons (Lambda Interferons) in Rheumatic Autoimmune Diseases

  • Tania Mora-Arias
  • Luis M. Amezcua-GuerraEmail author
Review

Abstract

The last 2 decades have witnessed the discovery and characterization of a new family of cytokines with immunological characteristics similar to those described for type I interferons, type III or lambda interferons. Unraveling the molecular mechanisms underlying each type of interferon has allowed us to understand how some autoimmune diseases can be considered as interferonopathies. Under normal conditions, type III interferons play a key role in the defense against viruses by modulating the functioning of several types of innate and adaptive immune cells. These effects include upregulation of major histocompatibility complex molecules by myeloid dendritic cells, increased functioning of pattern recognition receptors by plasmacytoid dendritic cells, decreased activity of regulatory T cells, enhanced production of antibodies by plasmatic cells and increased expression of chemokines and adhesion molecules by leukocytes and endothelial cells. Notably, all these mechanisms have been described to boost autoimmunity, and type III interferons pathway activation has been related to the pathogenesis of autoimmune conditions such as systemic lupus erythematosus, systemic sclerosis and Sjögren’s syndrome. This review provides an overview of the current evidence on the contribution of type III interferons in the pathogenesis of rheumatic autoimmune diseases in humans.

Keywords

Interferons Autoimmunity Inflammation Jak/STAT pathway Systemic lupus erythematosus 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amezcua-Guerra LM, Ferrusquía-Toríz D, Castillo-Martínez D et al (2015) Limited effectiveness for the therapeutic blockade of interferon α in systemic lupus erythematosus: a possible role for type III interferons. Rheumatology 54:203–205PubMedCrossRefPubMedCentralGoogle Scholar
  2. Amezcua-Guerra LM, Márquez-Velasco R, Chávez-Rueda AK et al (2017) Type III interferons in systemic lupus erythematosus: association between Interferon λ3, disease activity, and anti-Ro/SSA antibodies. J Clin Rheumatol 23:368–375PubMedCrossRefGoogle Scholar
  3. Apostolou E, Kapsogeorgou EK, Konsta OD et al (2016) Expression of type III interferons (IFNλs) and their receptor in Sjögren’s syndrome. Clin Exp Immunol 186:304–312PubMedPubMedCentralCrossRefGoogle Scholar
  4. Benham H, Nel HJ, Law SC et al (2015) Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci Transl Med 7:290ra87PubMedCrossRefGoogle Scholar
  5. Blazek K, Eames HL, Weiss M et al (2015) IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. J Exp Med 212:845–853PubMedPubMedCentralCrossRefGoogle Scholar
  6. Broggi A, Tan Y, Granucci F et al (2017) IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat Immunol 18:1084–1093PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bullens DM, Decraene A, Dilissen E et al (2008) Type III IFN-lambda mRNA expression in sputum of adult and school-aged asthmatics. Clin Exp Allergy 38:1459–1467PubMedCrossRefPubMedCentralGoogle Scholar
  8. Castillo-Martínez D, Juarez M, Patlán M et al (2017) Type-III interferons and rheumatoid arthritis: correlation between interferon lambda 1 (interleukin 29) and antimutated citrullinated vimentin antibody levels. Autoimmunity 50:82–85PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chang QJ, Lv C, Zhao F et al (2017) Elevated serum levels of interleukin-29 are associated with disease activity in rheumatoid arthritis patients with anti-cyclic citrullinated peptide antibodies. Tohoku J Exp Med 241:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen JY, Wang CM, Chen TD et al (2018) Interferon-λ3/4 genetic variants and interferon-λ3 serum levels are biomarkers of lupus nephritis and disease activity in Taiwanese. Arthritis Res Ther 20:193PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chiriac MT, Buchen B, Wandersee A et al (2017) Activation of epithelial signal transducer and activator of transcription 1 by interleukin 28 controls mucosal healing in mice with colitis and is increased in mucosa of patients with inflammatory bowel disease. Gastroenterology 153:123–138PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cohen TS, Prince AS (2013) Bacterial pathogens activate a common inflammatory pathway through IFNλ regulation of PDCD4. PLoS Pathog 9:e1003682PubMedPubMedCentralCrossRefGoogle Scholar
  13. Contoli M, Message SD, Laza-Stanca V et al (2006) Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 12:1023–1026PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dantas AT, Gonçalves SM, Pereira MC et al (2015) Interferons and systemic sclerosis: correlation between interferon gamma and interferon-lambda 1 (IL-29). Autoimmunity 48:429–433PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dellgren C, Gad HH, Hamming OJ et al (2009) Human interferon-lambda3 is a potent member of the type III interferon family. Genes Immun 10:125–131PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dolff S, Witzke O, Wilde B (2019) Th17 cells in renal inflammation and autoimmunity. Autoimmun Rev 18:129–136PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gottenberg JE, Cagnard N, Lucchesi C et al (2006) Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc Natl Acad Sci USA 103:2770–2775PubMedCrossRefPubMedCentralGoogle Scholar
  18. Ha YJ, Choi YS, Kang EH et al (2018) Increased expression of interferon-λ in minor salivary glands of patients with primary Sjögren’s syndrome and its synergic effect with interferon-α on salivary gland epithelial cells. Clin Exp Rheumatol 36(Suppl 112):S31–S40Google Scholar
  19. Haasnoot AM, Kuiper JJ, Hiddingh S et al (2016) Ocular fluid analysis in children reveals interleukin-29/interferon-λ1 as a biomarker for juvenile idiopathic arthritis-associated uveitis. Arthritis Rheumatol 68:1769–1779PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hwang JW, Lee KJ, Choi IH et al (2019) Decreased expression of type I (IFN-β) and III interferon (IFN-λ) and IFN-stimulated genes in chronic rhinosinusitis with and without nasal polyps. J Allergy Clin Immunol pii S0091–6749(19):31096-6Google Scholar
  21. Iversen MB, Ank N, Melchjorsen J et al (2010) Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-kappaB than type I IFNs. J Virol 84:4579–4586PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jewell NA, Cline T, Mertz SE et al (2010) Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 84:11515–11522PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jordan WJ, Eskdale J, Boniotto M et al (2007) Modulation of the human cytokine response by interferon lambda-1 (IFN-lambda1/IL-29). Genes Immun 8:13–20PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kotenko SV, Gallagher G, Baurin VV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lasfar A, Lewis-Antes A, Smirnov SV et al (2006) Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res 66:4468–4477PubMedCrossRefPubMedCentralGoogle Scholar
  26. Lazear HM, Nice TJ, Diamond MS (2015a) Interferon-λ: immune functions at barrier surfaces and beyond. Immunity 43:15–28PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lazear HM, Daniels BP, Pinto AK et al (2015b) Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 7:284ra59PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50:907–923PubMedPubMedCentralCrossRefGoogle Scholar
  29. Li B, Xie C, Lin X et al (2014) Interleukin-28A promotes IFN-γ production by peripheral blood mononuclear cells from patients with Behçet’s disease. Cell Immunol 290:116–119PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lin SC, Kuo CC, Tsao JT et al (2012) Profiling the expression of interleukin (IL)-28 and IL-28 receptor α in systemic lupus erythematosus patients. Eur J Clin Invest 42:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  31. Luo S, Wang Y, Zhao M et al (2016) The important roles of type I interferon and interferon-inducible genes in systemic lupus erythematosus. Int Immunopharmacol 40:542–549PubMedCrossRefGoogle Scholar
  32. Mahlakõiv P, Hernandez K, Gronke A et al (2015) Leukocyte-derived IFN-α/β and epithelial IFN-λ constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog 11:e1004782PubMedPubMedCentralCrossRefGoogle Scholar
  33. Marcello T, Grakoui A, Barba-Spaeth G et al (2006) Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–1898PubMedCrossRefPubMedCentralGoogle Scholar
  34. Mora T, Masso Rojas FA, Paez A et al (2015) A potential role of type III interferon in the glandular involvement of Sjögren’s syndrome. Arthritis Rheumatol 67(suppl 10):1374–1375Google Scholar
  35. Nocturne G, Mariette X (2013) Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol 9:544–556PubMedCrossRefPubMedCentralGoogle Scholar
  36. Obermoser G, Pascual V (2010) The interferon-α signature of systemic lupus erythematosus. Lupus 19:1012–1019PubMedPubMedCentralCrossRefGoogle Scholar
  37. Oke V, Brauner S, Larsson A et al (2017) IFN-λ1 with Th17 axis cytokines and IFN-α define different subsets in systemic lupus erythematosus (SLE). Arthritis Res Ther 19:139PubMedPubMedCentralCrossRefGoogle Scholar
  38. Prokunina-Olsson L, Muchmore B, Tang W et al (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45:164–171PubMedPubMedCentralCrossRefGoogle Scholar
  39. Reyes-Castillo Z, Palafox-Sánchez CA, Parra-Rojas I et al (2015) Comparative analysis of autoantibodies targeting peptidylarginine deiminase type 4, mutated citrullinated vimentin and cyclic citrullinated peptides in rheumatoid arthritis: associations with cytokine profiles, clinical and genetic features. Clin Exp Immunol 182:119–131PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sabat R (2010) IL-10 family of cytokines. Cytokine Growth Factor Rev 21:315–324PubMedCrossRefPubMedCentralGoogle Scholar
  41. Sheppard P, Kindsvogel W, Xu W et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sixtos-Alonso MS, Avalos-Martinez R, Sandoval-Salas R et al (2015) A genetic variant in the interleukin 28B gene as a major predictor for sustained virologic response in chronic hepatitis C virus infection. Arch Med Res 46:448–453PubMedCrossRefPubMedCentralGoogle Scholar
  43. Srinivas S, Dai J, Eskdale J et al (2008) Interferon-lambda1 (interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro. Immunology 125:492–502PubMedPubMedCentralCrossRefGoogle Scholar
  44. Thomas E, Gonzalez VD, Li Q et al (2012) HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 142:978–988PubMedPubMedCentralCrossRefGoogle Scholar
  45. Vlachiotis S, Andreakos E (2019) Lambda interferons in immunity and autoimmunity. J Autoimmun 104:102319PubMedCrossRefPubMedCentralGoogle Scholar
  46. Wang F, Xu L, Feng X et al (2012) Interleukin-29 modulates proinflammatory cytokine production in synovial inflammation of rheumatoid arthritis. Arthritis Res Ther 14:R228PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wells AI, Coyne CB (2018) Type III interferons in antiviral defenses at barrier surfaces. Trends Immunol 39:848–858PubMedPubMedCentralCrossRefGoogle Scholar
  48. Witte K, Gruetz G, Volk HD et al (2009) Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes Immun 10:702–714PubMedCrossRefGoogle Scholar
  49. Wolk K, Witte K, Witte E et al (2013) IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci Transl Med 5:204ra129PubMedCrossRefPubMedCentralGoogle Scholar
  50. Wu Q, Yang Q, Lourenco E et al (2011) Interferon-lambda1 induces peripheral blood mononuclear cell-derived chemokines secretion in patients with systemic lupus erythematosus: its correlation with disease activity. Arthritis Res Ther 13:R88PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wu Q, Yang Q, Sun H et al (2013) Serum IFN-λ1 is abnormally elevated in rheumatoid arthritis patients. Autoimmunity 46:40–43PubMedCrossRefPubMedCentralGoogle Scholar
  52. Xu L, Feng X, Tan W et al (2013) IL-29 enhances Toll-like receptor-mediated IL-6 and IL-8 production by the synovial fibroblasts from rheumatoid arthritis patients. Arthritis Res Ther 15:R170PubMedPubMedCentralCrossRefGoogle Scholar
  53. Yang L, Wei J, He S (2010) Integrative genomic analyses on interferon-ls and their roles in cancer prediction. Int J Mol Med 25:299–304PubMedPubMedCentralGoogle Scholar
  54. Zahn S, Rehkämper C, Kümmerer BM et al (2011) Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. J Invest Dermatol 131:133–140PubMedCrossRefPubMedCentralGoogle Scholar
  55. Zhang X, Brann TW, Zhou M et al (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186:4541–4545PubMedPubMedCentralCrossRefGoogle Scholar
  56. Zickert A, Oke V, Parodis I et al (2016) Interferon (IFN)-λ is a potential mediator in lupus nephritis. Lupus Sci Med 3:e000170PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2020

Authors and Affiliations

  1. 1.Department of ImmunologyInstituto Nacional de Cardiología Ignacio ChávezMexico CityMexico

Personalised recommendations