Advertisement

Archivum Immunologiae et Therapiae Experimentalis

, Volume 66, Issue 6, pp 415–421 | Cite as

Innate Lymphoid Cells in Inflammatory Bowel Disease

  • Jian Li
  • Sarah C. GloverEmail author
Review

Abstract

Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a complex chronic inflammatory condition of the human gut of unknown causes. Traditionally, dysregulated adaptive immune responses are thought to play a major role; however, accumulating evidence suggests that innate immunity also contributes to this process. Innate lymphoid cells (ILCs) are recently identified important components of innate immunity. They have critical roles in immunity, tissue development and remodeling. Numerous researchers have linked ILCs to the pathogenesis of IBD. In this review, we describe recent progress in our understanding about the phenotype and function alterations of ILCs as well as its interactions with other key mucosal cells in the gut of IBD patients. A better delineation of the ILCs’ behavior in the human intestine will contribute to our understanding of ILCs biology and provide valuable insights for potential therapeutic target selection for IBD patients.

Keywords

Innate lymphoid cells Inflammatory bowel disease Mucosal homeostasis T-cells 

Notes

Acknowledgements

This work was supported by the Gatorade Trust through funds distributed by the University of Florida, Department of Medicine.

Compliance with Ethical Standards

Conflict of Interest

The authors declared no conflicts of interest in this study. Sarah Glover, DO is a consultant for AbbVie, Janssen and Takeda. Sarah Glover, DO has received grant support from AbbVie, Bristol Myers Squibb, Celgene, Gilead, Janssen, Genentech, Millennium, Pfizer, Receptos, Takeda and UCB.

References

  1. Ananthakrishnan AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12:205–217CrossRefGoogle Scholar
  2. Andreu-Ballester JC, Amigó-García V, Catalán-Serra I et al (2011) Deficit of gammadelta T lymphocytes in the peripheral blood of patients with Crohn’s disease. Dig Dis Sci 56:2613–2622CrossRefGoogle Scholar
  3. Bailey JR, Bland PW, Tarlton JF et al (2012) IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One 7:e52332CrossRefGoogle Scholar
  4. Baumgart DC, Sandborn WJ (2012) Crohn’s disease. Lancet 380:1590–1605CrossRefGoogle Scholar
  5. Bernink JH, Peters CP, Munneke M et al (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229CrossRefGoogle Scholar
  6. Bernink JH, Krabbendam L, Germar K et al (2015) Interleukin-12 and – 23 Control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–160CrossRefGoogle Scholar
  7. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368CrossRefGoogle Scholar
  8. Bonen DK, Cho JH (2003) The genetics of inflammatory bowel disease. Gastroenterology 124:521–536CrossRefGoogle Scholar
  9. Bruce DW, Stefanski HE, Vincent BG et al (2017) Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest 127:1813–1825CrossRefGoogle Scholar
  10. Bruewer M, Utech M, Ivanov AI et al (2005) Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19:923–933CrossRefGoogle Scholar
  11. Cella M, Fuchs A, Vermi W et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725CrossRefGoogle Scholar
  12. Cupedo T, Crellin NK, Papazian N et al (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC + CD127 + natural killer-like cells. Nat Immunol 10:66–74CrossRefGoogle Scholar
  13. de Souza HS, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13:13–27CrossRefGoogle Scholar
  14. Diaz-Pena R, Vidal-Castineira JR, Moro-Garcia MA et al (2016) Significant association of the KIR2DL3/HLA-C1 genotype with susceptibility to Crohn’s disease. Hum Immunol 77:104–109CrossRefGoogle Scholar
  15. Egawa S, Hiwatashi N (1986) Natural killer cell activity in patients with inflammatory bowel disease. J Clin Lab Immunol 20:187–192PubMedGoogle Scholar
  16. Fort MM, Leach MW, Rennick DM (1998) A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J Immunol 161:3256–3261PubMedGoogle Scholar
  17. Fuchs A, Vermi W, Lee JS et al (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–781CrossRefGoogle Scholar
  18. Geremia A, Arancibia-Cárcamo CV, Fleming MP et al (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208:1127–1133CrossRefGoogle Scholar
  19. Gerosa F, Baldani-Guerra B, Nisii C et al (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333CrossRefGoogle Scholar
  20. Glatzer T, Killig M, Meisig J et al (2013) RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity 38:1223–1235CrossRefGoogle Scholar
  21. Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009CrossRefGoogle Scholar
  22. Halim TY, Steer CA, Mathä L et al (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40:425–435CrossRefGoogle Scholar
  23. Hepworth MR, Monticelli LA, Fung TC et al (2013) Innate lymphoid cells regulate CD4 + T-cell responses to intestinal commensal bacteria. Nature 498:113–117CrossRefGoogle Scholar
  24. Hepworth MR, Fung TC, Masur SH et al (2015) Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 348:1031–1035CrossRefGoogle Scholar
  25. Hollenbach JA, Ladner MB, Saeteurn K et al (2009) Susceptibility to Crohn’s disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand. Immunogenetics 61:663–671CrossRefGoogle Scholar
  26. Hoorweg K, Peters CP, Cornelissen F et al (2012) Functional differences between human NKp44(-) and NKp44(+) RORC(+) innate lymphoid cells. Front Immunol 3:72CrossRefGoogle Scholar
  27. Kadivar M, Petersson J, Svensson L et al (2016) CD8alphabeta + gammadelta T cells: a novel T cell subset with a potential role in inflammatory bowel disease. J Immunol 197:4584–4592CrossRefGoogle Scholar
  28. Laouar Y, Sutterwala FS, Gorelik L et al (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600–607CrossRefGoogle Scholar
  29. Li J, Doty A, Glover SC (2016a) Aryl hydrocarbon receptor signaling involves in the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of Crohn’s disease patients. Inflamm Cell Signal 3:e1404.  https://doi.org/10.14800/ics.1404 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li J, Doty AL, Iqbal A et al (2016b) The differential frequency of Lineage(-)CRTH2(-)CD45(+)NKp44(-)CD117(-)CD127(+)ILC subset in the inflamed terminal ileum of patients with Crohn’s disease. Cell Immunol 304–305:63–68CrossRefGoogle Scholar
  31. Li J, Doty AL, Tang Y et al (2017a) Enrichment of IL-17A(+) IFN-gamma(+) and IL-22(+) IFN-gamma(+) T cell subsets is associated with reduction of NKp44(+) ILC3s in the terminal ileum of Crohn’s disease patients. Clin Exp Immunol 190:143–153CrossRefGoogle Scholar
  32. Li J, Shouval DS, Doty AL et al (2017b) Increased mucosal IL-22 production of an IL-10RA mutation patient following anakinra treatment suggests further mechanism for mucosal healing. J Clin Immunol 37:104–107CrossRefGoogle Scholar
  33. Maazi H, Patel N, Sankaranarayanan I et al (2015) ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42:538–551CrossRefGoogle Scholar
  34. Mackley EC, Houston S, Marriott CL et al (2015) CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 6:5862CrossRefGoogle Scholar
  35. Mann ER, McCarthy NE, Peake ST et al (2012) Skin- and gut-homing molecules on human circulating gammadelta T cells and their dysregulation in inflammatory bowel disease. Clin Exp Immunol 170:122–130CrossRefGoogle Scholar
  36. Martin CE, Spasova DS, Frimpong-Boateng K et al (2017) Interleukin-7 Availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells. Immunity 47:171–182 e4CrossRefGoogle Scholar
  37. Martin-Fontecha A, Thomsen LL, Brett S et al (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265CrossRefGoogle Scholar
  38. McCarthy NE, Hedin CR, Sanders TJ et al (2015) Azathioprine therapy selectively ablates human Vdelta2(+) T cells in Crohn’s disease. J Clin Invest 125:3215–3225CrossRefGoogle Scholar
  39. McVay LD, Li B, Biancaniello R et al (1997) Changes in human mucosal gamma delta T cell repertoire and function associated with the disease process in inflammatory bowel disease. Mol Med 3:183–203CrossRefGoogle Scholar
  40. Mizuno S, Mikami Y, Kamada N et al (2014) Cross-talk between RORgammat + innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn’s disease. Inflamm Bowel Dis 20:1426–1434CrossRefGoogle Scholar
  41. Mjosberg J, Spits H (2016) Human innate lymphoid cells. J Allergy Clin Immunol 138:1265–1276CrossRefGoogle Scholar
  42. Mocikat R, Braumüller H, Gumy A et al (2003) Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569CrossRefGoogle Scholar
  43. Monticelli LA, Osborne LC, Noti M et al (2015) IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA 112:10762–10767CrossRefGoogle Scholar
  44. Morandi B, Bougras G, Muller WA et al (2006) NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion. Eur J Immunol 36:2394–2400CrossRefGoogle Scholar
  45. Moretta A, Marcenaro E, Parolini S et al (2008) NK cells at the interface between innate and adaptive immunity. Cell Death Differ 15:226–233CrossRefGoogle Scholar
  46. Nausch N, Appleby LJ, Sparks AM et al (2015) Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl Trop Dis 9:e0003627CrossRefGoogle Scholar
  47. Ng SC, Plamondon S, Al-Hassi HO et al (2009) A novel population of human CD56+ human leucocyte antigen D-related (HLA-DR+) colonic lamina propria cells is associated with inflammation in ulcerative colitis. Clin Exp Immunol 158:205–218CrossRefGoogle Scholar
  48. Oliphant CJ, Hwang YY, Walker JA et al (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:283–295CrossRefGoogle Scholar
  49. Ordas I, Eckmann L, Talamini M et al (2012) Ulcerative colitis. Lancet 380:1606–1619CrossRefGoogle Scholar
  50. Patrick DM, Leone AK, Shellenberger JJ et al (2006) Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling. BMC Physiol 6:2CrossRefGoogle Scholar
  51. Pelly VS, Kannan Y, Coomes SM et al (2016) IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9:1407–1417CrossRefGoogle Scholar
  52. Pickard JM, Maurice CF, Kinnebrew MA et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641CrossRefGoogle Scholar
  53. Sawa S, Lochner M, Satoh-Takayama N et al (2011) RORgammat + innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12:320–326CrossRefGoogle Scholar
  54. Simoni Y, Fehlings M, Kløverpris HN et al (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46:148–161CrossRefGoogle Scholar
  55. Song C, Lee JS, Gilfillan S et al (2015) Unique and redundant functions of NKp46 + ILC3s in models of intestinal inflammation. J Exp Med 212:1869–1882CrossRefGoogle Scholar
  56. Steel AW, Mela CM, Lindsay JO et al (2011) Increased proportion of CD16(+) NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment. Aliment Pharmacol Ther 33:115–126CrossRefGoogle Scholar
  57. Takayama T, Kamada N, Chinen H et al (2010) Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 139:882–892, 892 e1–3CrossRefGoogle Scholar
  58. Torres J, Mehandru S, Colombel JF et al (2017) Crohn’s disease. Lancet 389:1741–1755CrossRefGoogle Scholar
  59. Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510CrossRefGoogle Scholar
  60. von Moltke J, Ji M, Liang HE et al (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225CrossRefGoogle Scholar
  61. Wilhelm C, Harrison OJ, Schmitt V et al (2016) Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J Exp Med 213:1409–1418CrossRefGoogle Scholar
  62. Wilson TJ, Jobim M, Jobim LF et al (2010) Study of killer immunoglobulin-like receptor genes and human leukocyte antigens class I ligands in a Caucasian Brazilian population with Crohn’s disease and ulcerative colitis. Hum Immunol 71:293–297CrossRefGoogle Scholar
  63. Withers DR, Jaensson E, Gaspal F et al (2009) The survival of memory CD4 + T cells within the gut lamina propria requires OX40 and CD30 signals. J Immunol 183:5079–5084CrossRefGoogle Scholar
  64. Withers DR, Gaspal FM, Mackley EC et al (2012) Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J Immunol 189:2094–2098CrossRefGoogle Scholar
  65. Yusung S, McGovern D, Lin L et al (2017) NK cells are biologic and biochemical targets of 6-mercaptopurine in Crohn’s disease patients. Clin Immunol 175:82–90CrossRefGoogle Scholar
  66. Zenewicz LA, Yancopoulos GD, Valenzuela DM et al (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–957CrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology, Hepatology and Nutrition, Department of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations