The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy

  • Sabrina Giacoppo
  • Placido Bramanti
  • Emanuela Mazzon
Review

Abstract

In recent years, in the effort to find a potential innovative therapy for multiple sclerosis (MS), researchers focused on transplantation of mesenchymal stem cells (MSCs) due to their well-recognized ability to suppress inflammatory/autoimmune responses and exert neuroregenerative properties. MSCs are a heterogeneous subset of pluripotent non-hematopoietic stromal cells that can be isolated from many different adult tissues, characterized by the capability to differentiate into various cell lineages, and to translocate into damaged areas, providing immunomodulatory effects. To date, several encouraging results were obtained mainly from the use of MSCs derived from the bone marrow (BM-MSCs) in experimental models of MS as well as in clinical trials. However, their use in clinic is limited due to the invasive collecting procedure and the low yield of viable stem cells. Consequently, these restrictions have prompted researchers to look for alternative tissue sources for stem cells such as adipose tissue, fetal annexes, and dental tissues that could represent a novel therapeutic option for MS treatment. Here, we provide an overview of the current knowledge about the most explored BM-MSCs in MS treatment in experimental and clinical studies. Moreover, we propose that unconventional sources of stem cells, which show characteristics similar to that of BM-MSCs, and being less invasive for removal, could be considered an excellent alternative to BM-MSCs and thus could be a promising innovative approach for MS treatment.

Keywords

Multiple sclerosis Mesenchymal stem cells Bone marrow Adipose tissue Fetal annexes Dental tissues 

Abbreviations

AD-MSCs

Adipose-derived mesenchymal stem cells

BBB

Blood–brain barrier

BDNF

Brain-derived neurotrophic factor

BM-MSCs

Bone marrow mesenchymal stem cells

CM

Conditioned medium

CNS

Central nervous system

DD-MSCs

Decidua-derived mesenchymal stem cells

DT-MSCs

Dental tissues-derived mesenchymal stem cells

EAE

Experimental autoimmune encephalomyelitis

EGF

Epidermal growth factor

FA-MSCs

Fetal annexes-derived mesenchymal stem cells

FGF2

Fibroblast growth factor 2

GATA-3

GATA binding protein 3

G-CSF

Granulocyte colony-stimulating factor

GDNF

Glial cell-derived neurotrophic factor

GSK3β

Glycogen synthase kinase 3β

hAECs

Human amnion epithelial cells

hBMSCs

Human BM-MSCs

HGF

Hepatocyte growth factor

HLA-DR

Major histocompatibility complex, class II, DRα

HLA-G

Human leukocyte antigen G

hPDLSCs

Human periodontal ligament mesenchymal stem cells

hUC-MSCs

Human umbilical cord-derived MSCs

IFN-γ

Interferon-gamma

IGF

Insulin-like growth factor

IL

Interleukin

lnASCs

Lean healthy donors; obASCs obese AD-MSCs subjects

MCP-1

Monocyte chemoattractant protein-1

MOG35−55

Myelin oligodendroglial glycoprotein peptide

MRI

Magnetic resonance imaging

MS

Multiple sclerosis

MSCs

Mesenchymal stem cells

NGF

Nerve growth factor

PDGF

Platelet-derived growth factor

PDL

Periodontal ligament

PDLSCs

Periodontal ligament stem cells

PGE2

Prostaglandin E2

PL-MSCs

Human placental MSCs

PLP

Proteolipid protein

RORγT

RAR-related orphan receptor gamma

RR-EAE

Relapsing–remitting experimental autoimmune encephalomyelitis

SHEDs

Exfoliated deciduous teeth stem cells

SP

Secondary progressive

T-bet

Transcription factor T-bet

TGF

Transforming growth factor

TNF

Tumor necrosis factor

TSG-6

Tumor necrosis factor-inducible gene 6

VEGF

Vascular endothelial growth factor

WJ-MSCs

Wharton’s jelly mesenchymal stem cells

Notes

Acknowledgements

This work was supported by current research funds 2016 of IRCCS “Centro Neurolesi Bonino-Pulejo”, Messina, Italy.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. Ab Kadir R, Zainal Ariffin SH, Megat Abdul Wahab R et al (2012) Characterization of mononucleated human peripheral blood cells. Sci World J 2012:843843CrossRefGoogle Scholar
  2. Ahmed Nel-M, Murakami M, Hirose Y et al (2016) Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study. Stem Cells Int 2016:8102478PubMedCentralCrossRefGoogle Scholar
  3. Akiyama K, You YO, Yamaza T et al (2012) Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Res Ther 3:40PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andersson PB, Waubant E, Gee L et al (1999) Multiple sclerosis that is progressive from the time of onset: clinical characteristics and progression of disability. Arch Neurol 56:1138–1142PubMedCrossRefGoogle Scholar
  5. Arthur A, Rychkov G, Shi S et al (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795PubMedCrossRefGoogle Scholar
  6. Baglio SR, Rooijers K, Koppers-Lalic D et al (2015) Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6:127PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bai L, Lennon DP, Eaton V et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392PubMedCrossRefGoogle Scholar
  9. Benatti BB, Silverio KG, Casati MZ et al (2007) Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. J Biosci Bioeng 103:1–6PubMedCrossRefGoogle Scholar
  10. Bentivegna A, Roversi G, Riva G et al (2016) The effect of culture on human bone marrow mesenchymal stem cells: focus on DNA methylation profiles. Stem Cells Int 2016:5656701PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beurel E, Michalek SM, Jope RS et al (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31:24–31PubMedCrossRefGoogle Scholar
  12. Beyth S, Borovsky Z, Mevorach D et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219PubMedCrossRefGoogle Scholar
  13. Black IB, Woodbury D (2001) Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 27:632–636PubMedCrossRefGoogle Scholar
  14. Bollini S, Gentili C, Tasso R (2013) The regenerative role of the fetal and adult stem cell secretome. J Clin Med 2:302–327PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bonab MM, Sahraian MA, Aghsaie A et al (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7:407–414PubMedCrossRefGoogle Scholar
  16. Bravo B, Gallego MI, Flores AI et al (2016) Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis. Stem Cell Res Ther 7:43PubMedPubMedCentralCrossRefGoogle Scholar
  17. Campagnoli C, Roberts IA, Kumar S et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402PubMedCrossRefGoogle Scholar
  18. Chan J, Kennea NL, Fisk NM et al (2007) Placental mesenchymal stem cells. Am J Obstet Gynecol 196:e18PubMedCrossRefGoogle Scholar
  19. Chen N, Hudson JE, Walczak P et al (2005) Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells 23:1560–1570PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen JY, Mou XZ, Du XC et al (2015) Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pac J Trop Med 8:739–746PubMedCrossRefGoogle Scholar
  21. Christodoulou I, Kolisis FN, Papaevangeliou D et al (2013) Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s Jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells Int 2013:246134PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cohen JA (2013) Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 333:43–49PubMedPubMedCentralCrossRefGoogle Scholar
  23. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73PubMedCrossRefGoogle Scholar
  24. Connick P, Kolappan M, Crawley C et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11:150–156PubMedPubMedCentralCrossRefGoogle Scholar
  25. Constantin G, Marconi S, Rossi B et al (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27:2624–2635PubMedCrossRefGoogle Scholar
  26. De Bari C, Dell’Accio F, Tylzanowski P et al (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942PubMedCrossRefGoogle Scholar
  27. De Coppi P, Bartsch G, Siddiqui MM Jr et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106PubMedCrossRefGoogle Scholar
  28. Deuse T, Stubbendorff M, Tang-Quan K et al (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20:655–667PubMedCrossRefGoogle Scholar
  29. Di Trapani M, Bassi G, Ricciardi M et al (2013) Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cells Dev 22:2990–3002PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ding G, Liu Y, Wang W et al (2010) Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells 28:1829–1838PubMedPubMedCentralCrossRefGoogle Scholar
  31. Disanto G, Morahan JM, Barnett MH et al (2012) The evidence for a role of B cells in multiple sclerosis. Neurology 78:823–832PubMedPubMedCentralCrossRefGoogle Scholar
  32. Donders R, Vanheusden M, Bogie JF et al (2015) Human Wharton’s Jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant 24:2077–2098PubMedCrossRefGoogle Scholar
  33. Dulamea A (2015) Mesenchymal stem cells in multiple sclerosis - translation to clinical trials. J Med Life 8:24–27PubMedPubMedCentralGoogle Scholar
  34. Duquette P, Pleines J, Girard M et al (1992) The increased susceptibility of women to multiple sclerosis. Can J Neurol Sci 19:466–471PubMedGoogle Scholar
  35. Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7:268–277PubMedCrossRefGoogle Scholar
  36. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242PubMedCrossRefGoogle Scholar
  37. Fisher-Shoval Y, Barhum Y, Sadan O et al (2012) Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J Mol Neurosci 48:176–184PubMedCrossRefGoogle Scholar
  38. Fox RJ, Rudick RA (2004) Multiple sclerosis: disease markers accelerate progress. Lancet Neurol 3:10PubMedCrossRefGoogle Scholar
  39. Fraser JK, Schreiber R, Strem B et al (2006) Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S33–S37PubMedCrossRefGoogle Scholar
  40. Friedenstein AJ, Chailakhyan RK, Latsinik NV et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340PubMedCrossRefGoogle Scholar
  41. Gang EJ, Bosnakovski D, Figueiredo CA et al (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109:1743–1751PubMedCrossRefGoogle Scholar
  42. Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 10:149–160PubMedCrossRefGoogle Scholar
  43. Gerdoni E, Gallo B, Casazza S et al (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61:219–227PubMedCrossRefGoogle Scholar
  44. Ghasemi N (2015) Therapeutic effects of adipose derived mesenchymal stem cells on remyelination process in inflammatory demyelinating diseases. Histol Histopathol 2:1–8CrossRefGoogle Scholar
  45. Gordon D, Pavlovska G, Uney JB et al (2010) Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 69:1087–1095PubMedCrossRefGoogle Scholar
  46. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407PubMedPubMedCentralCrossRefGoogle Scholar
  47. Greco SJ, Liu K, Rameshwar P (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25:3143–3154PubMedCrossRefGoogle Scholar
  48. Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gronthos S, Brahim J, Li W et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535PubMedCrossRefGoogle Scholar
  50. Guo Y, Chan KH, Lai WH et al (2013) Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis. Neuroimmunomodulation 20:294–303PubMedCrossRefGoogle Scholar
  51. Hemmer B, Nessler S, Zhou D et al (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211PubMedCrossRefGoogle Scholar
  52. Hou ZL, Liu Y, Mao XH et al (2013) Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr 7:404–407PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huang GTJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hunt JS, Petroff MG, McIntire RH et al (2005) HLA-G and immune tolerance in pregnancy. FASEB J 19:681–693PubMedCrossRefGoogle Scholar
  55. Ilancheran S, Michalska A, Peh G et al (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588PubMedCrossRefGoogle Scholar
  56. In‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345CrossRefGoogle Scholar
  57. Inoue T, Sugiyama M, Hattori H et al (2013) Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 19:24–29PubMedCrossRefGoogle Scholar
  58. Ishii T, Eto K (2014) Fetal stem cell transplantation: Past, present, and future. World. J Stem Cells 6:404–420CrossRefGoogle Scholar
  59. Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297PubMedPubMedCentralCrossRefGoogle Scholar
  60. Joyce N, Annett G, Wirthlin L et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kadar K, Kiraly M, Porcsalmy B et al (2009) Differentiation potential of stem cells from human dental origin - promise for tissue engineering. J Physiol Pharmacol 60(Suppl 7):167–175PubMedGoogle Scholar
  62. Kalinina N, Kharlampieva D, Loguinova M et al (2015) Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res Ther 6:221PubMedPubMedCentralCrossRefGoogle Scholar
  63. Karussis D, Kassis I (2008) The potential use of stem cells in multiple sclerosis: an overview of the preclinical experience. Clin Neurol Neurosurg 110:889–896PubMedCrossRefGoogle Scholar
  64. Karussis D, Karageorgiou C, Vaknin-Dembinsky A et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kemp K, Hares K, Mallam E et al (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 114:1569–1580PubMedCrossRefGoogle Scholar
  66. Kundrotas G, Gasperskaja E, Slapsyte G et al (2016) Identity, proliferation capacity, genomic stability and novel senescence markers of mesenchymal stem cells isolated from low volume of human bone marrow. Oncotarget 7:10788–10802PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kurte M, Bravo-Alegria J, Torres A et al (2015) Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis. Stem Cells Int 2015:140170PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lanza C, Morando S, Voci A et al (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110:1674–1684PubMedCrossRefGoogle Scholar
  69. Ledesma-Martinez E, Mendoza-Nunez VM, Santiago-Osorio E (2016) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int 2016:4709572PubMedCrossRefGoogle Scholar
  70. Li H, Niederkorn JY, Neelam S et al (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907PubMedCrossRefGoogle Scholar
  71. Li JF, Zhang DJ, Geng T et al (2014) The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 23(Suppl 10):S113–122PubMedCrossRefGoogle Scholar
  72. Li CY, Wu XY, Tong JB et al (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6:55PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liang J, Zhang H, Hua B et al (2009) Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler 15:644–646PubMedCrossRefGoogle Scholar
  74. Liu YH, Vaghjiani V, Tee JY et al (2012) Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One 7:e35758PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu R, Zhang Z, Lu Z, Borlongan C et al (2013) Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev 22:1053–1062PubMedCrossRefGoogle Scholar
  76. Llufriu S, Sepulveda M, Blanco Y et al (2014) Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PloS One 9:e113936PubMedPubMedCentralCrossRefGoogle Scholar
  77. Locke M, Windsor J, Dunbar PR (2009) Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 79:235–244PubMedCrossRefGoogle Scholar
  78. Lu Z, Zhao H, Xu J et al (2013) Human umbilical cord mesenchymal stem cells in the treatment of secondary progressive multiple sclerosis. J Stem Cell Res Ther 1–7Google Scholar
  79. Lublin FD, Bowen JD, Huddlestone J et al (2014a) Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 3:696–704PubMedCrossRefGoogle Scholar
  80. Lublin FD, Reingold SC, Cohen JA et al (2014b) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mallam E, Kemp K, Wilkins A et al (2010) Characterization of in vitro expanded bone marrow-derived mesenchymal stem cells from patients with multiple sclerosis. Mult Scler 16:909–918PubMedCrossRefGoogle Scholar
  82. Marin-Banasco C, Suardiaz Garcia M, Hurtado Guerrero I et al (2014) Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in a relapsing-remitting multiple sclerosis model. Stem Cell Res Ther 5:134PubMedPubMedCentralCrossRefGoogle Scholar
  83. McDonald C SC, Bernard CC (2011) The emergence of amnion epithelial stem cells for the treatment of multiple sclerosis. Inflamm Regen 31:256–271CrossRefGoogle Scholar
  84. McDonald CA, Payne NL, Sun G et al (2015) Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation 12:112PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mead B, Logan A, Berry M et al (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9:e109305PubMedPubMedCentralCrossRefGoogle Scholar
  86. Meza-Zepeda LA, Noer A, Dahl JA et al (2008) High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 12:553–563PubMedCrossRefGoogle Scholar
  87. Miao Z, Jin J, Chen L et al (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687PubMedCrossRefGoogle Scholar
  88. Mikaeili Agah E, Parivar K, Joghataei MT (2014) Therapeutic effect of transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis. Mol Neurobiol 49:625–632PubMedCrossRefGoogle Scholar
  89. Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559PubMedCrossRefGoogle Scholar
  90. Mittelbrunn M, Sanchez-Madrid F (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13:328–335PubMedPubMedCentralGoogle Scholar
  91. Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J et al (2007) Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 4:50–57PubMedGoogle Scholar
  93. Murphy S, Rosli S, Acharya R et al (2010) Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol Chap. 1: Unit 1E.6Google Scholar
  94. Nessler J, Benardais K, Gudi V et al (2013) Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 8:e69795PubMedPubMedCentralCrossRefGoogle Scholar
  95. Noer A, Sorensen AL, Boquest AC et al (2006) Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell 17:3543–3556PubMedPubMedCentralCrossRefGoogle Scholar
  96. Noseworthy JH, Lucchinetti C, Rodriguez M et al (2000) Multiple sclerosis. N Engl J Med 343:938–952PubMedCrossRefGoogle Scholar
  97. Ohnishi S, Ohgushi H, Kitamura S et al (2007) Mesenchymal stem cells for the treatment of heart failure. Int J Hematol 86:17–21PubMedCrossRefGoogle Scholar
  98. Ong W K, Tan CS, Chan KL et al (2014) Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports 2:171–179PubMedPubMedCentralCrossRefGoogle Scholar
  99. Osathanon T, Manokawinchoke J, Nowwarote N et al (2013) Notch signaling is involved in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells. Stem Cells Dev 22:1220–1231PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433PubMedCrossRefGoogle Scholar
  101. Parker AM, Katz AJ (2006) Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther 6:567–578PubMedCrossRefGoogle Scholar
  102. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619PubMedCrossRefGoogle Scholar
  103. Payne N, Siatskas C, Bernard CC (2008) The promise of stem cell and regenerative therapies for multiple sclerosis. J Autoimmun 31:288–294PubMedCrossRefGoogle Scholar
  104. Payne NL, Sun G, McDonald C (2013) Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 22:1409–1425PubMedCrossRefGoogle Scholar
  105. Pires AO, Neves-Carvalho A, Sousa N et al (2014) The secretome of bone marrow and wharton jelly derived mesenchymal stem cells induces differentiation and neurite outgrowth in SH-SY5Y cells. Stem Cell Int 2014:438352Google Scholar
  106. Pires AO, Mendes-Pinheiro B, Teixeira FG et al (2016) Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem Cells Dev 25:1073–1083PubMedCrossRefGoogle Scholar
  107. Pisciotta A, Carnevale G, Meloni S et al (2015) Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol 15:14PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rafei M, Campeau PM, Aguilar-Mahecha A et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182:5994–6002PubMedCrossRefGoogle Scholar
  109. Rao MS, Mattson MP (2001) Stem cells and aging: expanding the possibilities. Mech Ageing Dev 122:713–734PubMedCrossRefGoogle Scholar
  110. Reiner SL (2007) Development in motion: helper T cells at work. Cell 129:33–36PubMedCrossRefGoogle Scholar
  111. Ribeiro CA, Fraga JS, Graos M et al (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 3:18PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rodriguez M (2007) Effectors of demyelination and remyelination in the CNS: implications for multiple sclerosis. Brain Pathol 17:219–229PubMedCrossRefGoogle Scholar
  113. Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22:117–139PubMedCrossRefGoogle Scholar
  114. Sakai K, Yamamoto A, Matsubara K et al (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90PubMedGoogle Scholar
  115. Salgado AJ, Reis RL, Sousa NJ et al (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5:103–110PubMedCrossRefGoogle Scholar
  116. Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69:880–893PubMedCrossRefGoogle Scholar
  117. Semon JA, Maness C, Zhang X et al (2014) Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther 5:2PubMedPubMedCentralCrossRefGoogle Scholar
  118. Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 364:149–155CrossRefGoogle Scholar
  119. Shalaby SM, Sabbah NA, Saber T (2016) Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 68:106–115PubMedCrossRefGoogle Scholar
  120. Shimojima C, Takeuchi H, Jin S et al (2016) Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 196:4164–4171PubMedCrossRefGoogle Scholar
  121. Shin KS, Na KH, Lee HJ et al (2009) Characterization of fetal tissue-derived mesenchymal stem cells. Int. J Stem Cells 2:51–58CrossRefGoogle Scholar
  122. Siffrin V, Brandt AU, Herz J et al (2007) New insights into adaptive immunity in chronic neuroinflammation. Adv Immunol 96:1–40PubMedCrossRefGoogle Scholar
  123. Siffrin V, Vogt J, Radbruch H (2010) Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210PubMedCrossRefGoogle Scholar
  124. Sonoyama W, Liu Y, Fang D et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sonoyama W, Liu Y, Yamaza T et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747PubMedCrossRefGoogle Scholar
  127. Sotiropoulou PA, Perez SA, Gritzapis AD et al (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85PubMedCrossRefGoogle Scholar
  128. Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490PubMedCrossRefGoogle Scholar
  129. Strem BM, Hicok KC, Zhu M et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54:132–141PubMedCrossRefGoogle Scholar
  130. Strong AL, Bowles AC, Wise RM et al (2016) Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34:614–626PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tafreshi AP, Payne N, Sun G et al (2014) Inactive GSK3beta is disturbed in the spinal cord during experimental autoimmune encephalomyelitis, but rescued by stem cell therapy. Neuroscience 277:498–505PubMedCrossRefGoogle Scholar
  132. Tai Y-T, Svendsen CN (2004) Stem cells as a potential treatment of neurological disorders. Curr Opin Pharmacol 4:98–104PubMedCrossRefGoogle Scholar
  133. Tan JL, Chan ST, Wallace EM et al (2014) Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant 23:319–328PubMedCrossRefGoogle Scholar
  134. Toda A, Okabe M, Yoshida T et al (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228PubMedCrossRefGoogle Scholar
  135. Tomar GB, Srivastava RK, Gupta N et al (2010) Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 393:377–383PubMedCrossRefGoogle Scholar
  136. Trubiani O, Isgro A, Zini N et al (2008) Functional interleukin-7/interleukin-7Ralpha, and SDF-1alpha/CXCR4 are expressed by human periodontal ligament derived mesenchymal stem cells. J Cell Physiol 214:706–713PubMedCrossRefGoogle Scholar
  137. Trubiani O, Giacoppo S, Ballerini P et al (2016) Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res Ther 7:1PubMedPubMedCentralCrossRefGoogle Scholar
  138. Uccelli A, Prockop DJ (2010) Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 22:768–774PubMedCrossRefGoogle Scholar
  139. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedCrossRefGoogle Scholar
  140. Ulmer FL, Winkel A, Kohorst P et al (2010) Stem cells–prospects in dentistry. Schweiz Monatsschr Zahnmed 120:860–883PubMedGoogle Scholar
  141. Vosoughi R, Freedman MS (2010) Therapy of MS. Clin Neurol Neurosurg 112:365–385PubMedCrossRefGoogle Scholar
  142. Wagner W, Wein F, Seckinger A et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416PubMedCrossRefGoogle Scholar
  143. Weber MS, Hemmer B (2010) Cooperation of B cells and T cells in the pathogenesis of multiple sclerosis. Results Probl Cell Differ 51:115–126PubMedCrossRefGoogle Scholar
  144. Weber MS, Menge T, Lehmann-Horn K et al (2012) Current treatment strategies for multiple sclerosis - efficacy versus neurological adverse effects. Curr Pharm Des 18:209–219PubMedCrossRefGoogle Scholar
  145. Wilkins A, Kemp K, Ginty M et al (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3:63–70PubMedCrossRefGoogle Scholar
  146. Woodbury D, Schwarz EJ, Prockop DJ et al (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370PubMedCrossRefGoogle Scholar
  147. Xin LZ, Govindasamy V, Musa S et al (2013) Dental stem cells as an alternative source for cardiac regeneration. Med Hypotheses 81:704–706PubMedCrossRefGoogle Scholar
  148. Yamagata M, Yamamoto A, Kako E et al (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44:551–554PubMedCrossRefGoogle Scholar
  149. Yamout B, Hourani R, Salti H et al (2010) Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 227:185–189PubMedCrossRefGoogle Scholar
  150. Yousefi F, Ebtekar M, Soleimani M et al (2013) Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 17:608–616PubMedCrossRefGoogle Scholar
  151. Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing Zappia T-cell anergy. Blood 106:1755–1761PubMedCrossRefGoogle Scholar
  152. Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419PubMedCrossRefGoogle Scholar
  153. Zepp J, Wu L, Li X (2011) IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease. Trends Immunol 32:232–239PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang J, Li Y, Chen J et al (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195:16–26PubMedCrossRefGoogle Scholar
  155. Zhang W, Walboomers XF, Van Kuppevelt TH et al (2008) In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2:117–125PubMedCrossRefGoogle Scholar
  156. Zhang X, Bowles AC, Semon JA et al (2014) Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model. PLoS One 9:e85007PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zhu Y, Liu T, Song K et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675PubMedCrossRefGoogle Scholar
  158. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar
  159. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2017

Authors and Affiliations

  • Sabrina Giacoppo
    • 1
  • Placido Bramanti
    • 1
  • Emanuela Mazzon
    • 1
  1. 1.Department of Experimental Neurology LaboratoryIRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly

Personalised recommendations