Type I, II, and III Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection

  • Maja TravarEmail author
  • Miroslav Petkovic
  • Antonija Verhaz


Interferons (IFNs) are cytokines released by host cells in response to the presence of pathogens or tumor cells. The aim of this review was to present the previously known and new findings about the role of interferons type I and II, and recently discovered type III in Mycobacterium tuberculosis (M. tuberculosis) infection control. Infection of various cell types with M. tuberculosis induce both IFN-α and IFN-β synthesis. The majority of the studies support the findings that IFN type I actually promotes infection with M. tuberculosis. It has been well establish that IFN-γ has protective function against M. tuberculosis and the other mycobacteria and that the primary source of this cytokine are CD4+ and CD8+ T cells. Recently, it has been shown that also the innate lymphocytes, γδ T cells, natural killer (NK) T cells, and NK cells can also be the source of IFN-γ in response to mycobacterial infection. Several studies have shown that CD4+ T cells protect mice against M. tuberculosis independently of IFN-γ. The balance between IFN-γ and different cytokines such as IL-10 and other Th2 cell cytokines is likely to influence disease outcome. Type I IFN appears to be detrimental through at least three separate, but overlapping, type I IFN-mediated mechanisms: induction of excessive apoptosis, specific suppression of Th1 and IFN-γ responses, and dampening of the immune response by strong IL-10 induction. Recently it has been found that M. tuberculosis infection in A549 lung epithelial cells stimulate up-regulation of IFN-λ genes in vitro. IFN-λs also have a role in modulation of Th1/Th2 response. IFN-λs are not essential for M. tuberculosis infection control, but can give some contribution in immune response to this pathogen.


Interferon Interferon lambda Mycobacterium tuberculosis 


Compliance with ethical standards

Conflict of interest

None to declare.


  1. Ahmad S (2011) Pathogenesis, immunology and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2011:814943CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akira S, Takeda K (2004) Functions of toll-like receptors: lessons from KO mice. C R Biol 327:581–589CrossRefPubMedGoogle Scholar
  3. Ank N, West H, Bartholdy C et al (2006) Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80:4501–4509CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antonelli LR, Rothfuchs AG, Gonçalves R et al (2010) Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591CrossRefPubMedGoogle Scholar
  6. Barnes B, Lubyova B, Pitha PM (2002) On the role of IRF in host defense. J Interferon Cytokine Res 22:59–71CrossRefPubMedGoogle Scholar
  7. Behar SM, Martin CJ, Nunes-Alves C et al (2011) Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 13:749–756CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berry MP, Graham CM, McNab FW et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430:257–263CrossRefPubMedGoogle Scholar
  10. Bhatt K, Hickman SP, Salgame P (2004) Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol 172:2748–2751CrossRefPubMedGoogle Scholar
  11. Bierne H, Travier L, Mahlakõiv T et al (2012) Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS ONE 7:e39080CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bloom CI, Graham CM, Berry MP et al (2012) Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS ONE 7:e46191CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bodnar KA, Serbina NV, Flynn JL (2001) Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69:800–809CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bold TD, Banaei N, Wolf AJ et al (2011) Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of Mycobacterium tuberculosis in vivo. PLoS Pathog 7:e1002063CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bousso P (2008) T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 8:675–684CrossRefPubMedGoogle Scholar
  16. Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620CrossRefPubMedGoogle Scholar
  17. Chackerian A, Alt J, Perera V et al (2002) Activation of NKT cells protects mice from tuberculosis. Infect Immun 70:6302–6309CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coccia EM, Severa M, Giacomini E et al (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34:796–805CrossRefPubMedGoogle Scholar
  19. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cooper AM, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191–204CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cooper AM, Pearl JE, Brooks JV et al (2000) Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun 68:6879–6882CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cooper AM, Adams LB, Dalton DK et al (2002) IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10:221–226CrossRefPubMedGoogle Scholar
  23. Cooper AM, Mayer-Barber KD, Sher A (2011) Role of innate cytokines in mycobacterial infection. Mucosal Immunol 4:252–260CrossRefPubMedPubMedCentralGoogle Scholar
  24. Davidson S, Maini MK, Wack A (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 35:252–264CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dheda K, Schwander SK, Zhu B et al (2010) The immunology of tuberculosis: from bench to bedside. Respirology 15:433–450CrossRefPubMedGoogle Scholar
  26. Diel R, Loddenkemper R, Niemann S et al (2011) Negative and positive predictive value of a whole-blood interferon-γ release assay for developing active tuberculosis: an update. Am J Respir Crit Care Med 183:88–95CrossRefPubMedGoogle Scholar
  27. Divangahi M, Behar SM, Remold H (2013) Dying to live: how the death modality of the infected macrophage affects immunity to tuberculosis. Adv Exp Med Biol 783:103–120CrossRefPubMedPubMedCentralGoogle Scholar
  28. Doyle SL, Husebye H, Connolly DJ et al (2012) The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nat Commun 3:707CrossRefPubMedGoogle Scholar
  29. Dumoutier L, Tounsi A, Michiels T et al (2004) Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. J Biol Chem 279:32269–32274CrossRefPubMedGoogle Scholar
  30. Egen JG, Rothfuchs AG, Feng CG et al (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–819CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feng CG, Kaviratne M, Rothfuchs AG et al (2006) NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 177:7086–7093CrossRefPubMedGoogle Scholar
  32. Fitzgerald KA, Rowe DC, Barnes BJ et al (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055CrossRefPubMedPubMedCentralGoogle Scholar
  33. Flynn JL, Chan J (2005) What’s good for the host is good for the bug. Trend Microbiol 13:98–102CrossRefGoogle Scholar
  34. Gallagher G, Megjugorac NJ, Yu RY et al (2010) The lambda interferons: guardians of the immune-epithelial interface and the T-helper 2 response. J Interferon Cytokine Res 30:603–615CrossRefPubMedGoogle Scholar
  35. Gallegos AM, van Heijst JW, Samstein M et al (2011) A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7:e1002052CrossRefPubMedPubMedCentralGoogle Scholar
  36. Geijtenbeek TB, Van Vliet SJ, Koppel EA et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197:7–17CrossRefPubMedPubMedCentralGoogle Scholar
  37. Giacomini E, Iona E, Feroni L et al (2001) Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 166:7033–7041CrossRefPubMedGoogle Scholar
  38. Giacomini E, Remoli ME, Scandurra M et al (2011) Expression of proinflammatory and regulatory cytokines via NF-κB and MAPK-dependent and IFN regulatory factor-3-independent mechanisms in human primary monocytes infected by Mycobacterium tuberculosis. Clin Dev Immunol 2011:841346CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gringhuis SI, den Dunnen J, Litjens M et al (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088CrossRefPubMedGoogle Scholar
  40. Grotzke JE, Siler AC, Lewinsohn DA et al (2010) Secreted immunodominant Mycobacterium tuberculosis antigens are processed by the cytosolic pathway. J Immunol 185:4336–4343CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hanekom WA, Mendillo M, Manca C et al (2003) Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 188:257–266CrossRefPubMedGoogle Scholar
  42. Harari A, Rozot V, Bellutti Enders F et al (2011) Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 17:372–376CrossRefPubMedGoogle Scholar
  43. Hölscher C, Reiling N, Schaible UE et al (2008) Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38:680–694CrossRefPubMedGoogle Scholar
  44. Hou J, Schindler U, Henzel WJ et al (1995) Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2:321–329CrossRefPubMedGoogle Scholar
  45. Hsu T, Hingley-Wilson SM, Chen B et al (2003) The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425CrossRefPubMedPubMedCentralGoogle Scholar
  46. Iversen MB, Paludan SR (2010) Mechanisms of type III interferon expression. J Interferon Cytokine Res 30:573–578CrossRefPubMedGoogle Scholar
  47. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995CrossRefPubMedGoogle Scholar
  48. Jordan WJ, Eskdale J, Srinivas S et al (2007) Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response. Genes Immun 8:254–261CrossRefPubMedGoogle Scholar
  49. Kamath AB, Alt J, Debbabi H et al (2004) The major histocompatibility complex haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect Immun 72:6790–6798CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1:20–30CrossRefPubMedGoogle Scholar
  51. Keane J, Gershon S, Wise RP et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104CrossRefPubMedGoogle Scholar
  52. Kleinnijenhuis J, Oosting M, Joosten LA et al (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310CrossRefPubMedPubMedCentralGoogle Scholar
  53. Korbel DS, Schneider BE, Schraible UE (2008) Innate immunity in tuberculosis: myths and truth. Microbes Infect 10:995–1004CrossRefPubMedGoogle Scholar
  54. Kotenko SV (2002) The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 13:223–240CrossRefPubMedGoogle Scholar
  55. Kotenko SV (2011) IFN-λs. Curr Opin Immunol 23:583–590CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kotenko SV, Gallagher G, Baurin VV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77CrossRefPubMedGoogle Scholar
  57. Leber JH, Crimmins GT, Raghavan S et al (2008) Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog 4:e6CrossRefPubMedPubMedCentralGoogle Scholar
  58. Li M, Liu X, Zhou Y et al (2009) Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol 86:23–32CrossRefPubMedGoogle Scholar
  59. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306CrossRefPubMedGoogle Scholar
  60. Lu C, Wu J, Wang H et al (2011) Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS ONE 6:e24290CrossRefPubMedPubMedCentralGoogle Scholar
  61. MacMicking JD (2012) Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol 12:367–382CrossRefPubMedPubMedCentralGoogle Scholar
  62. Maher SG, Sheikh F, Scarzello AJ et al (2008) IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther 7:1109–1115CrossRefPubMedPubMedCentralGoogle Scholar
  63. Malmgaard L (2004) Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24:439–454CrossRefPubMedGoogle Scholar
  64. Manca C, Tsenova L, Bergtold A et al (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc Natl Acad Sci USA 98:5752–5757CrossRefPubMedPubMedCentralGoogle Scholar
  65. Marcello T, Grakoui A, Barba-Spaeth G et al (2006) Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–1898CrossRefPubMedGoogle Scholar
  66. Mayer-Barber KD, Andrade BB, Barber DL et al (2011) Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–1034CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mayer-Barber KD, Andrade BB, Oland SD (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103CrossRefPubMedGoogle Scholar
  68. McNab FW, Ewbank J, Rajsbaum R et al (2013) TPL-2-ERK signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. J Immunol 191:1732–1743CrossRefPubMedPubMedCentralGoogle Scholar
  69. McWhirter SM, Fitzgerald KA, Rosains J et al (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101:233–238CrossRefPubMedPubMedCentralGoogle Scholar
  70. Murray J, Sonnenberg P, Nelson G et al (2007) Cause of death and presence of respiratory disease at autopsy in an HIV-1 seroconversion cohort of southern African gold miners. AIDS 21(Suppl 6):S97–S104CrossRefPubMedGoogle Scholar
  71. Nagarajan U (2011) Induction and function of IFNβ during viral and bacterial infection. Crit Rev Immunol 31:459–474CrossRefPubMedPubMedCentralGoogle Scholar
  72. Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208:2251–2262CrossRefPubMedPubMedCentralGoogle Scholar
  73. Novikov A, Cardone M, Thompson R et al (2011) Mycobacterium tuberculosis triggers host type I interferon signaling to regulate IL-1β production in human macrophages. J Immunol 187:2540–2547CrossRefPubMedPubMedCentralGoogle Scholar
  74. Nunes-Alves C, Booty MG, Carpenter SM et al (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12:289–299CrossRefPubMedPubMedCentralGoogle Scholar
  75. Onoguchi K, Yoneyama M, Takemura A et al (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282:7576–7581CrossRefPubMedGoogle Scholar
  76. Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16:57–63CrossRefPubMedGoogle Scholar
  77. Pandey AK, Yang Y, Jiang Z et al (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32CrossRefPubMedGoogle Scholar
  79. Pietilä TE, Latvala S, Osterlund P et al (2010) Inhibition of dynamin-dependent endocytosis interferes with type III IFN expression in bacteria-infected human monocyte-derived DCs. J Leukoc Biol 88:665–674CrossRefPubMedGoogle Scholar
  80. Pitt JM, Stavropoulos E, Redford PS et al (2012) Blockade of IL-10 signaling during bacillus Calmette–Guérin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-γ and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J Immunol 189:4079–4087CrossRefPubMedPubMedCentralGoogle Scholar
  81. Prokunina-Olsson L, Muchmore B, Tang W et al (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45:164–171CrossRefPubMedPubMedCentralGoogle Scholar
  82. Remoli ME, Giacomini E, Lutfalla G et al (2002) Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J Immunol 169:366–374CrossRefPubMedGoogle Scholar
  83. Renauld JC (2003) Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 3:667–676CrossRefPubMedGoogle Scholar
  84. Rothfuchs AG, Bafica A, Feng CG et al (2007) Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells. J Immunol 179:3463–3471CrossRefPubMedGoogle Scholar
  85. Saiga H, Shimada Y, Takeda K (2011) Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011:347594CrossRefPubMedPubMedCentralGoogle Scholar
  86. Samstein M, Schreiber HA, Leiner IM et al (2013) Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2:e01086CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sauzullo I, Scrivo R, Mengoni F et al (2014) Multi-functional flow cytometry analysis of CD4+ T cells as an immune biomarker for latent tuberculosis status in patients treated with tumour necrosis factor (TNF) antagonists. Clin Exp Immunol 176:410–417CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schwander S, Dheda K (2011) Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. Am J Respir Crit Care Med 183:696–707CrossRefPubMedPubMedCentralGoogle Scholar
  89. Shafiani S, Tucker-Heard G, Kariyone A et al (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sheppard P, Kindsvogel W, Xu W et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68CrossRefPubMedGoogle Scholar
  91. Siebler J, Wirtz S, Weigmann B et al (2007) IL-28A is a key regulator of T-cell-mediated liver injury via the T-box transcription factor T-bet. Gastroenterology 132:358–371CrossRefPubMedGoogle Scholar
  92. Sommereyns C, Paul S, Staeheli P et al (2008) IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4:e1000017CrossRefPubMedPubMedCentralGoogle Scholar
  93. Sonnenberg P, Glynn JR, Fielding K et al (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191:150–158CrossRefPubMedGoogle Scholar
  94. Stanley SA, Johndrow JE, Manzanillo P et al (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152CrossRefPubMedGoogle Scholar
  95. Strutt TM, McKinstry KK, Dibble JP et al (2010) Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16:558–564CrossRefPubMedPubMedCentralGoogle Scholar
  96. Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14:111–116CrossRefPubMedGoogle Scholar
  97. Tezuka Y, Endo S, Matsui A et al (2012) Potential anti-tumor effect of IFN-λ2 (IL-28A) against human lung cancer cells. Lung Cancer 78:185–192CrossRefPubMedGoogle Scholar
  98. Theofilopoulos AN, Baccala R, Beutler B et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336CrossRefPubMedGoogle Scholar
  99. Tomasello E, Pollet E, Vu Manh TP et al (2014) Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types. Front Immunol 5:526CrossRefPubMedPubMedCentralGoogle Scholar
  100. Travar M, Vucic M, Petkovic M (2014) Interferon lambda-2 levels in sputum of patients with pulmonary Mycobacterium tuberculosis infection. Scand J Immunol 80:43–49CrossRefPubMedGoogle Scholar
  101. Uze G, Schreiber G, Piehler J et al (2007) The receptor of the type I interferon family. Curr Topics Microbiol Immunol 316:71–95Google Scholar
  102. van der Wel NN, Hava D, Houben D et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298CrossRefPubMedGoogle Scholar
  103. Winslow GM, Roberts AD, Blackman MA et al (2003) Persistence and turnover of antigen-specific CD4+ T cells during chronic tuberculosis infection in the mouse. J Immunol 170:2046–2052CrossRefPubMedGoogle Scholar
  104. Witte K, Witte E, Sabat R et al (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21:237–251CrossRefPubMedGoogle Scholar
  105. Wolf AJ, Desvignes L, Linas B et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115CrossRefPubMedPubMedCentralGoogle Scholar
  106. Woodworth JS, Behar SM (2006) Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit Rev Immunol 26:317–352CrossRefPubMedPubMedCentralGoogle Scholar
  107. Woodworth JS, Fortune SM, Behar SM (2008) Bacterial protein secretion is required for priming of CD8+ T cells specific for the Mycobacterium tuberculosis antigen CFP10. Infect Immun 76:4199–4205CrossRefPubMedPubMedCentralGoogle Scholar
  108. World Health Organization (2014) Global tuberculosis report 2014. WHO/HTM/TB/2014.08. World Health Organization, GenevaGoogle Scholar
  109. Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yang CT, Cambier CJ, Davis JM et al (2012) Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 12:301–332CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zhang SY, Boisson-Dupuis S, Chapgier A et al (2008) Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev 226:29–40CrossRefPubMedGoogle Scholar
  112. Zhou Z, Hamming OJ, Ank N et al (2007) Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol 81:7749–7758CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhu H, Butera M, Nelson DR et al (2005) Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication. Virol J 2:80CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zuñiga J, Torres-García D, Santos-Mendoza T et al (2012) Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol 2012:193923CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2015

Authors and Affiliations

  • Maja Travar
    • 1
    • 2
    Email author
  • Miroslav Petkovic
    • 2
  • Antonija Verhaz
    • 3
  1. 1.Department of MicrobiologyUniversity Hospital Clinical Centre Banja LukaBanja LukaRepublic of Srpska, Bosnia and Herzegovina
  2. 2.Department of Microbiology and Immunology, Faculty of MedicineBanja Luka UniversityBanja LukaRepublic of Srpska, Bosnia and Herzegovina
  3. 3.Clinic for Infectious DiseasesUniversity Hospital Clinical Centre Banja LukaBanja LukaRepublic of Srpska, Bosnia and Herzegovina

Personalised recommendations