Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies

  • Sameer Agnihotri
  • Kelly E. Burrell
  • Amparo Wolf
  • Sharzhad Jalali
  • Cynthia Hawkins
  • James T. Rutka
  • Gelareh Zadeh


Glioblastoma (GBM) is the most common and lethal primary brain tumor. Over the past few years tremendous genomic and proteomic characterization along with robust animal models of GBM have provided invaluable data that show that “GBM”, although histologically indistinguishable from one another, are comprised of molecularly heterogenous diseases. In addition, robust pre-clinical models and a better understanding of the core pathways disrupted in GBM are providing a renewed optimism for novel strategies targeting these devastating tumors. Here, we summarize a brief history of the disease, our current molecular knowledge, lessons from animal models and emerging concepts of angiogenesis, invasion, and metabolism in GBM that may lend themselves to therapeutic targeting.


Glioblastoma Molecular genetics of glioma Mouse models Novel molecular targets 


  1. Abdollahi A, Lipson KE, Han X et al (2003a) SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63:3755–3763PubMedGoogle Scholar
  2. Abdollahi A, Lipson KE, Sckell A et al (2003b) Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 63:8890–8898PubMedGoogle Scholar
  3. Aghi M, Chiocca EA (2005) Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 12:994–1005PubMedCrossRefGoogle Scholar
  4. Agnihotri S, Wolf A, Munoz DM et al (2011) A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J Exp Med 208:689–702PubMedCrossRefGoogle Scholar
  5. Agnihotri S, Gajadhar AS, Ternamian C et al (2012) Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest 122:253–266PubMedCrossRefGoogle Scholar
  6. Ahn G-O, Brown JM (2009) Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis 12:159–164PubMedCrossRefGoogle Scholar
  7. Akiyama Y, Jung S, Salhia B et al (2001) Hyaluronate receptors mediating glioma cell migration and proliferation. J Neurooncol 53:115–127PubMedCrossRefGoogle Scholar
  8. Alcantara Llaguno S, Chen J, Kwon CH et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56PubMedCrossRefGoogle Scholar
  9. An Z, Gluck CB, Choy ML et al (2010) Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture. Cancer Lett 292:215–227PubMedCrossRefGoogle Scholar
  10. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228PubMedCrossRefGoogle Scholar
  11. Bailey P, Cushing H (1926) A classification of the tumors of the Glioma group on histogenetic basis with correlated study of prognosis. Lipponcott, Philadelphia, p 175Google Scholar
  12. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95PubMedCrossRefGoogle Scholar
  13. Batchelor TT, Duda DG, Di Tomaso E et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823PubMedCrossRefGoogle Scholar
  14. Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069PubMedCrossRefGoogle Scholar
  15. Bello L, Francolini M, Marthyn P et al (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49:380–389 (discussion 390)PubMedGoogle Scholar
  16. Berens ME, Giese A (1999) “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1:208–219PubMedCrossRefGoogle Scholar
  17. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410PubMedCrossRefGoogle Scholar
  18. Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51PubMedCrossRefGoogle Scholar
  19. Brem S (1999) Angiogenesis and cancer control: from concept to therapeutic trial. Cancer Control 6:436–458PubMedGoogle Scholar
  20. Browder T, Butterfield CE, Kraling BM et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886PubMedGoogle Scholar
  21. Bruns CJ, Shrader M, Harbison MT et al (2002) Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 102:101–108PubMedCrossRefGoogle Scholar
  22. Burrell K, Hill RP, Zadeh G (2012) High-resolution in vivo analysis of normal brain response to cranial irradiation. PLoS One 7:e38366PubMedCrossRefGoogle Scholar
  23. Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74:3735–3739PubMedCrossRefGoogle Scholar
  24. Canadian Cancer Society’s Steering Committee (2010) Canadian cancer statistics 2010. Canadian Cancer Society, TorontoGoogle Scholar
  25. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  26. Carlson BL, Grogan PT, Mladek AC et al (2009) Radiosensitizing effects of temozolomide observed in vivo only in a subset of O6-methylguanine-DNA methyltransferase methylated glioblastoma multiforme xenografts. Int J Radiat Oncol Biol Phys 75:212–219PubMedCrossRefGoogle Scholar
  27. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  28. Carmeliet P, Jain RK (2011a) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307PubMedCrossRefGoogle Scholar
  29. Carmeliet P, Jain RK (2011b) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427PubMedCrossRefGoogle Scholar
  30. Casper KB, Jones K, McCarthy KD (2007) Characterization of astrocyte-specific conditional knockouts. Genesis 45:292–299PubMedCrossRefGoogle Scholar
  31. Cavallaro U, Christofori G (2000) Molecular mechanisms of tumor angiogenesis and tumor progression. J Neurooncol 50:63–70PubMedCrossRefGoogle Scholar
  32. CBTRUS (2010) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States, Hinsdale http://www.cbtrusorg
  33. Chen J, Kwon CH, Lin L et al (2009) Inducible site-specific recombination in neural stem/progenitor cells. Genesis 47:122–131PubMedCrossRefGoogle Scholar
  34. Chetty C, Vanamala SK, Gondi CS et al (2012) MMP-9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells. Cell Signal 24:549–559PubMedCrossRefGoogle Scholar
  35. Chow LM, Zhang J, Baker SJ (2008) Inducible cre recombinase activity in mouse mature astrocytes and adult neural precursor cells. Transgenic Res 17:919–928PubMedCrossRefGoogle Scholar
  36. Choy H, Kim DW (2003) Chemotherapy and irradiation interaction. Semin Oncol 30:3–10PubMedCrossRefGoogle Scholar
  37. Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233PubMedCrossRefGoogle Scholar
  38. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  39. Dai C, Celestino JC, Okada Y et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925PubMedCrossRefGoogle Scholar
  40. Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. JAMA 90:3CrossRefGoogle Scholar
  41. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744PubMedCrossRefGoogle Scholar
  42. Dang L, White DW, Gross S et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966PubMedCrossRefGoogle Scholar
  43. Darland D (2001) Tumor angiogenesis and microcirculation, 1st edn. Marcel Dekker Inc., New YorkGoogle Scholar
  44. Deltour I, Johansen C, Auvinen A et al (2009) Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974–2003. J Natl Cancer Inst 101:1721–1724PubMedCrossRefGoogle Scholar
  45. Dietrich J, Diamond EL, Kesari S (2010) Glioma stem cell signaling: therapeutic opportunities and challenges. Exp Rev Anticancer Ther 10:709–722CrossRefGoogle Scholar
  46. Ding H, Roncari L, Shannon P et al (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61:3826–3836PubMedGoogle Scholar
  47. Ding H, Shannon P, Lau N et al (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63:1106–1113PubMedGoogle Scholar
  48. Dirks PB (2001) Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 53:203–212PubMedCrossRefGoogle Scholar
  49. Dirks PB (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26:2916–2924PubMedCrossRefGoogle Scholar
  50. Dong S, Nutt CL, Betensky RA et al (2005) Histology-based expression profiling yields novel prognostic markers in human glioblastoma. J Neuropathol Exp Neurol 64:948–955PubMedCrossRefGoogle Scholar
  51. Du R, Lu KV, Petritsch C et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220PubMedCrossRefGoogle Scholar
  52. Durairaj A, Mehra A, Singh RP et al (2000) Therapeutic angiogenesis. Cardiol Rev 8:279–287PubMedCrossRefGoogle Scholar
  53. El Hallani S, Boisselier B, Peglion F et al (2010) A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133:973–982PubMedCrossRefGoogle Scholar
  54. Elder RH, Jansen JG, Weeks RJ et al (1998) Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol Cell Biol 18:5828–5837PubMedGoogle Scholar
  55. Farrell CJ, Plotkin SR (2007) Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurol Clin 25:925–946 (viii)PubMedCrossRefGoogle Scholar
  56. Folkman J (1990) What is the evidence that tumors are angiogenesis-dependent? J Natl Cancer Inst 82:4–6PubMedCrossRefGoogle Scholar
  57. Forsyth PA, Wong H, Laing TD et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835PubMedCrossRefGoogle Scholar
  58. Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710PubMedCrossRefGoogle Scholar
  59. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  60. Geng L, Donnelly E, McMahon G et al (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419PubMedGoogle Scholar
  61. Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39:235–250 (discussion 250–252)PubMedCrossRefGoogle Scholar
  62. Globus J, Strauss I (1925) Spongioblastoma multiforme. Arch Neurol Psychiatry 14:139–151CrossRefGoogle Scholar
  63. Godar S, Ince TA, Bell GW et al (2008) Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134:62–73PubMedCrossRefGoogle Scholar
  64. Goldin N, Arzoine L, Heyfets A et al (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27:4636–4643PubMedCrossRefGoogle Scholar
  65. Gorski DH, Mauceri HJ, Salloum RM et al (2003) Prolonged treatment with angiostatin reduces metastatic burden during radiation therapy. Cancer Res 63:308–311PubMedGoogle Scholar
  66. Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 15:519–530PubMedCrossRefGoogle Scholar
  67. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  68. Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502PubMedCrossRefGoogle Scholar
  69. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoiesis and VEGF. Oncogene 18:5356–5362PubMedCrossRefGoogle Scholar
  70. Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129PubMedCrossRefGoogle Scholar
  71. Holland EC, Hively WP, DePinho RA et al (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685PubMedCrossRefGoogle Scholar
  72. Holland EC, Celestino J, Dai C et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57PubMedCrossRefGoogle Scholar
  73. Houck KA, Ferrara N, Winer J et al (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814PubMedCrossRefGoogle Scholar
  74. Ikawa M, Tanaka N, Kao WW et al (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 8:666–673PubMedCrossRefGoogle Scholar
  75. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989PubMedCrossRefGoogle Scholar
  76. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  77. Jain RK, Carmeliet PF (2001) Vessels of death or life. Sci Am 285:38–45PubMedCrossRefGoogle Scholar
  78. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67:2729–2735PubMedCrossRefGoogle Scholar
  79. Kamijo T, Bodner S, van de Kamp E (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222PubMedGoogle Scholar
  80. Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78:281–293PubMedCrossRefGoogle Scholar
  81. Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515PubMedCrossRefGoogle Scholar
  82. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739PubMedCrossRefGoogle Scholar
  83. Kim JW, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefGoogle Scholar
  84. King D, Yang G, Thompson MA et al (2002) Loss of neurofibromatosis-1 and p19(ARF) cooperate to induce a multiple tumor phenotype. Oncogene 21:4978–4982PubMedCrossRefGoogle Scholar
  85. Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705PubMedCrossRefGoogle Scholar
  86. Kleber S, Sancho-Martinez I, Wiestler B et al (2008) Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–248PubMedCrossRefGoogle Scholar
  87. Kleihues P, Cavanee WK (2000) World Health Organization classification of tumors: pathology and genetic: tumors of the nervous system. IARC Press, LyonGoogle Scholar
  88. Klein G, Weinhouse S (1974) Tumor angiogenesis. In: Folkman J (ed) Advances in cancer research. Academic Press, New York, pp 43–52Google Scholar
  89. Kozin SV, Boucher Y, Hicklin DJ et al (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44PubMedGoogle Scholar
  90. Kozin SV, Winkler F, Garkavtsev I et al (2007) Human tumor xenografts recurring after radiotherapy are more sensitive to anti-vascular endothelial growth factor receptor-2 treatment than treatment-naive tumors. Cancer Res 67:5076–5082PubMedCrossRefGoogle Scholar
  91. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745PubMedCrossRefGoogle Scholar
  92. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482PubMedCrossRefGoogle Scholar
  93. Lefranc F, Rynkowski M, DeWitte O et al (2009) Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. Adv Tech Stand Neurosurg 34:3–35PubMedCrossRefGoogle Scholar
  94. Lutsenko SV, Kiselev SM, Severin SE (2003) Molecular mechanisms of tumor angiogenesis. Biochemistry 68:286–300PubMedGoogle Scholar
  95. Majewski N, Nogueira V, Bhaskar P et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830PubMedCrossRefGoogle Scholar
  96. Marumoto T, Tashiro A, Friedmann-Morvinski D et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116PubMedCrossRefGoogle Scholar
  97. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786PubMedCrossRefGoogle Scholar
  98. Mellinghoff IK, Wang MY, Vivanco I et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024PubMedCrossRefGoogle Scholar
  99. Michelakis ED, Sutendra G, Dromparis P et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31–34CrossRefGoogle Scholar
  100. Mrugala MM (2009) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 72:773PubMedGoogle Scholar
  101. Muehlbauer PM (2003) Anti-angiogenesis in cancer therapy. Semin Oncol Nurs 19:180–192PubMedCrossRefGoogle Scholar
  102. Munoz DM, Guha A (2011) Mouse models to interrogate the implications of the differentiation status in the ontogeny of gliomas. Oncotarget 2:590–598PubMedGoogle Scholar
  103. Murai T, Miyazaki Y, Nishinakamura H et al (2004) Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem 279:4541–4550PubMedCrossRefGoogle Scholar
  104. Nakada M, Nakada S, Demuth T et al (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478PubMedCrossRefGoogle Scholar
  105. Narayana A, Kunnakkat SD, Medabalmi P et al (2012) Change in pattern of relapse after antiangiogenic therapy in high-grade glioma. Int J Radiat Oncol Biol Phys 82:77–82PubMedCrossRefGoogle Scholar
  106. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522PubMedCrossRefGoogle Scholar
  107. Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899PubMedCrossRefGoogle Scholar
  108. Pandita A, Aldape KD, Zadeh G et al (2004) Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosom Cancer 39:29–36PubMedCrossRefGoogle Scholar
  109. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970PubMedGoogle Scholar
  110. Pardanaud L, Altmann C, Kitos P et al (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349PubMedGoogle Scholar
  111. Park DM, Rich JN (2009) Biology of glioma cancer stem cells. Mol Cells 28:7–12PubMedCrossRefGoogle Scholar
  112. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCrossRefGoogle Scholar
  113. Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618PubMedCrossRefGoogle Scholar
  114. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15PubMedCrossRefGoogle Scholar
  115. Pedersen PL, Mathupala S, Rempel A et al (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20PubMedCrossRefGoogle Scholar
  116. Piaskowski S, Bienkowski M, Stoczynska-Fidelus E et al (2011) Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br J Cancer 104:968–970PubMedCrossRefGoogle Scholar
  117. Plas DR, Thompson CB (2002) Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 13:75–78PubMedCrossRefGoogle Scholar
  118. Puduvalli VK, Sawaya R (2000) Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neurooncol 50:189–200PubMedCrossRefGoogle Scholar
  119. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501PubMedCrossRefGoogle Scholar
  120. Reilley KM, Loisen DM, Bronson RT et al (2000) Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26:109–113CrossRefGoogle Scholar
  121. Ribatti D (2004) The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 8:294–300PubMedCrossRefGoogle Scholar
  122. Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumour growth. Eur J Cancer 39:1835–1841PubMedCrossRefGoogle Scholar
  123. Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828PubMedCrossRefGoogle Scholar
  124. Rickman DS, Bobek MP, Misek DE et al (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891PubMedGoogle Scholar
  125. Riemenschneider MJ, Mueller W, Betensky RA et al (2005) In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol 167:1379–1387PubMedCrossRefGoogle Scholar
  126. Risau W (1991) Embryonic angiogenesis factors. Pharmacol Ther 51:371–376PubMedCrossRefGoogle Scholar
  127. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674PubMedCrossRefGoogle Scholar
  128. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91PubMedCrossRefGoogle Scholar
  129. Rutka JT, Muller M, Hubbard SL et al (1999) Astrocytoma adhesion to extracellular matrix: functional significance of integrin and focal adhesion kinase expression. J Neuropathol Exp Neurol 58:198–209PubMedCrossRefGoogle Scholar
  130. Sanchez-Martin M (2008) Brain tumour stem cells: implications for cancer therapy and regenerative medicine. Curr Stem Cell Res Ther 3:197–207PubMedCrossRefGoogle Scholar
  131. Sarkaria JN, Carlson BL, Schroeder MA et al (2006) Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res 12:2264–2271PubMedCrossRefGoogle Scholar
  132. Scherer HJ (1940) A critical review: the pathology of cerebral gliomas. J Neurol Psychiatry 3:147–177PubMedCrossRefGoogle Scholar
  133. Schueneman AJ, Himmelfarb E, Geng L et al (2003) SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 63:4009–4016PubMedGoogle Scholar
  134. Schulte A, Gunther HS, Martens T et al (2012) Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin Cancer Res 18:1901–1913PubMedCrossRefGoogle Scholar
  135. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  136. Sipos EP, Tamargo RJ, Weingart JD et al (1994) Inhibition of tumor angiogenesis. Ann N Y Acad Sci 732:263–272PubMedCrossRefGoogle Scholar
  137. Smith SA, Engelward BP (2000) In vivo repair of methylation damage in Aag 3-methyladenine DNA glycosylase null mouse cells. Nucleic Acids Res 28:3294–3300PubMedCrossRefGoogle Scholar
  138. Sohr S, Engeland K (2008) RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7:3448–3460PubMedCrossRefGoogle Scholar
  139. Stern R, Shuster S, Neudecker BA et al (2002) Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 276:24–31PubMedCrossRefGoogle Scholar
  140. Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846PubMedCrossRefGoogle Scholar
  141. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  142. Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335PubMedCrossRefGoogle Scholar
  143. Uhrbom L, Hesselager G, Nister M et al (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279PubMedGoogle Scholar
  144. Uhrbom L, Dai C, Celestino JC et al (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558PubMedGoogle Scholar
  145. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  146. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCrossRefGoogle Scholar
  147. Virchow R (1863) Die Krankhaften Geschwulste. Hirschwald, BerlinGoogle Scholar
  148. Voest EE (2004) Angiogenesis: from understanding to targeting. Biochim Biophys Acta 1654:1PubMedGoogle Scholar
  149. Vredenburgh JJ, Desjardins A, Herndon JE et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259PubMedCrossRefGoogle Scholar
  150. Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedCrossRefGoogle Scholar
  151. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270PubMedGoogle Scholar
  152. Watanabe T, Nobusawa S, Kleihues P et al (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153PubMedCrossRefGoogle Scholar
  153. Wei Q, Clarke L, Scheidenhelm DK et al (2006) High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 66:7429–7437PubMedCrossRefGoogle Scholar
  154. Weiss WA, Burns MJ, Hackett C et al (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63:1589–1595PubMedGoogle Scholar
  155. Weissenberger J, Steinbach JP, Malin G et al (1997) Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14:2005–2013PubMedCrossRefGoogle Scholar
  156. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507PubMedCrossRefGoogle Scholar
  157. Wen P, Macdonald D, Reardon D et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRefGoogle Scholar
  158. Willett CG, Kozin SV, Duda DG et al (2006) Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 33:S35–S40PubMedCrossRefGoogle Scholar
  159. Wilting J, Christ B (1996) Embryonic angiogenesis: a review. Naturwissenschaften 83:153–164PubMedCrossRefGoogle Scholar
  160. Wilting J, Brand-Saberi B, Kurz H et al (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41:219–232PubMedGoogle Scholar
  161. Xiao A, Wu H, Pandolfi PP et al (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168PubMedCrossRefGoogle Scholar
  162. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCrossRefGoogle Scholar
  163. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedCrossRefGoogle Scholar
  164. Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248PubMedCrossRefGoogle Scholar
  165. Zhang HR, Chen FL, Xu CP et al (2009) Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol 93:165–174PubMedCrossRefGoogle Scholar
  166. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265PubMedCrossRefGoogle Scholar
  167. Zhu Y, Guignard F, Zhao D et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130PubMedCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2012

Authors and Affiliations

  • Sameer Agnihotri
    • 1
  • Kelly E. Burrell
    • 1
  • Amparo Wolf
    • 1
  • Sharzhad Jalali
    • 1
  • Cynthia Hawkins
    • 1
    • 2
  • James T. Rutka
    • 1
    • 3
  • Gelareh Zadeh
    • 1
    • 4
  1. 1.Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  2. 2.Department of Neuropathology, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  3. 3.Department of Neurosurgery, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  4. 4.Department of Neurosurgery, Western HospitalUniversity of TorontoTorontoCanada

Personalised recommendations