The Role and Regulation of mTOR in T-Lymphocyte Function

  • Thomas F. O’Brien
  • Xiao-Ping ZhongEmail author


The conversion of naïve T cells into effector T cells is initiated by stimulation through the T-cell receptor (TCR). Upon activation, T cells undergo significant morphological and functional changes, putting new metabolic demands on the cell. Past research has identified the mammalian target of rapamycin (mTOR) as a critical regulator of cell metabolism, and the development of new genetic models has begun to reveal an important role for this pathway in the homeostasis and function of T lymphocytes. In this review, we focus on the most recent findings that demonstrate the ability of mTOR to regulate T-cell activation, CD8+ memory cell formation and function, and helper T lineage differentiation. Furthermore, we highlight the importance of tight control of mTOR signaling by tuberous sclerosis complex 1 for T-cell homeostasis, and the regulation of mTOR signaling by diacylglycerol kinases and the RasGRP1-Ras-Erk1/2 pathway in the context of TCR signaling.


Mammalian target of rapamycin Tuberous sclerosis complex 1 Diacylglycerol kinase RasGPP1 PI3K/Akt T lymphocyte 



We thank Dr. Balachandra Gorentla for his helpful discussions regarding this work and Sruti Srivatsan for helpful discussions and editing the manuscript. This study is supported by funding from the National Institute of Health (R01AI076357, R01AI079088, and R21AI079873), the American Cancer Society (RSG-08-186-01-LIB), and the American Heart Association.


  1. Allen A, Zheng Y, Gardner L et al (2004) The novel cyclophilin binding compound, sanglifehrin A, disassociates G1 cell cycle arrest from tolerance induction. J Immunol 172:4797–4803PubMedGoogle Scholar
  2. Araki K, Turner AP, Shaffer VO et al (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112PubMedCrossRefGoogle Scholar
  3. Avila-Flores A, Santos T, Rincon E et al (2005) Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem 280:10091–10099PubMedCrossRefGoogle Scholar
  4. Cai SL, Tee AR, Short JD et al (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173:279–289PubMedCrossRefGoogle Scholar
  5. Chen Z, Laurence A, O’Shea JJ (2007) Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol 19:400–408PubMedCrossRefGoogle Scholar
  6. Colombetti S, Benigni F, Basso V et al (2002) Clonal anergy is maintained independently of T cell proliferation. J Immunol 169:6178–6186PubMedGoogle Scholar
  7. Coudronniere N, Villalba M, Englund N et al (2000) NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci USA 97:3394–3399PubMedCrossRefGoogle Scholar
  8. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRefGoogle Scholar
  9. Delgoffe GM, Pollizzi KN, Waickman AT et al (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12:295–303PubMedCrossRefGoogle Scholar
  10. Dower NA, Stang SL, Bottorff DA et al (2000) RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 1:317–321PubMedCrossRefGoogle Scholar
  11. Dumont FJ, Staruch MJ, Koprak SL et al (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 144:251–258PubMedGoogle Scholar
  12. Ebinu JO, Stang SL, Teixeira C et al (2000) RasGRP links T-cell receptor signaling to Ras. Blood 95:3199–3203PubMedGoogle Scholar
  13. Fang Y, Vilella-Bach M, Bachmann R et al (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945PubMedCrossRefGoogle Scholar
  14. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151–3171PubMedCrossRefGoogle Scholar
  15. Fingar DC, Salama S, Tsou C et al (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487PubMedCrossRefGoogle Scholar
  16. Garami A, Zwartkruis FJ, Nobukuni T et al (2003) Insulin activation of Rheb, a mediator of mTOR/S6 K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11:1457–1466PubMedCrossRefGoogle Scholar
  17. Gingras AC, Raught B, Gygi SP et al (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852–2864PubMedCrossRefGoogle Scholar
  18. Gonzalez-Rodriguez A, Alba J, Zimmerman V et al (2009) S6K1 deficiency protects against apoptosis in hepatocytes. Hepatology 50:216–229PubMedCrossRefGoogle Scholar
  19. Gorentla BK, Wan CK, Zhong XP (2011) Negative regulation of mTOR activation by diacylglycerol kinases. Blood 117:4022–4031PubMedCrossRefGoogle Scholar
  20. Guo R, Wan CK, Carpenter JH et al (2008) Synergistic control of T cell development and tumor suppression by diacylglycerol kinase alpha and zeta. Proc Natl Acad Sci USA 105:11909–11914PubMedCrossRefGoogle Scholar
  21. Hildeman DA, Mitchell T, Teague TK et al (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10:735–744PubMedCrossRefGoogle Scholar
  22. Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37(Pt 1):217–222PubMedCrossRefGoogle Scholar
  23. Huang J, Dibble CC, Matsuzaki M et al (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28:4104–4115PubMedCrossRefGoogle Scholar
  24. Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657PubMedCrossRefGoogle Scholar
  25. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRefGoogle Scholar
  26. Intlekofer AM, Takemoto N, Wherry EJ et al (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244PubMedCrossRefGoogle Scholar
  27. Isakov N, Altman A (2002) Protein kinase C(theta) in T cell activation. Annu Rev Immunol 20:761–794PubMedCrossRefGoogle Scholar
  28. Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128PubMedCrossRefGoogle Scholar
  29. Jefferies HB, Reinhard C, Kozma SC et al (1994) Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 91:4441–4445PubMedCrossRefGoogle Scholar
  30. Jefferies HB, Fumagalli S, Dennis PB et al (1997) Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704PubMedCrossRefGoogle Scholar
  31. Jeno P, Ballou LM, Novak-Hofer I et al (1988) Identification and characterization of a mitogen-activated S6 kinase. Proc Natl Acad Sci USA 85:406–410PubMedCrossRefGoogle Scholar
  32. Julien LA, Carriere A, Moreau J et al (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30:908–921PubMedCrossRefGoogle Scholar
  33. Kazanietz MG (2002) Novel “nonkinase” phorbol ester receptors: the C1 domain connection. Mol Pharmacol 61:759–767PubMedCrossRefGoogle Scholar
  34. Kim DH, Sabatini DM (2004) Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279:259–270PubMedCrossRefGoogle Scholar
  35. Kuo CT, Veselits ML, Leiden JM (1997) LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277:1986–1990PubMedCrossRefGoogle Scholar
  36. Lee K, Gudapati P, Dragovic S et al (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:743–753PubMedCrossRefGoogle Scholar
  37. Liu CH, Machado FS, Guo R et al (2007) Diacylglycerol kinase zeta regulates microbial recognition and host resistance to toxoplasma gondii. J Exp Med 204:781–792PubMedCrossRefGoogle Scholar
  38. Ma L, Chen Z, Erdjument-Bromage H et al (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193PubMedCrossRefGoogle Scholar
  39. Modiano JF, Johnson LD, Bellgrau D (2008) Negative regulators in homeostasis of naive peripheral T cells. Immunol Res 41:137–153PubMedCrossRefGoogle Scholar
  40. Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRefGoogle Scholar
  41. O’Brien TF, Gorentla BK, Xie D et al (2011) Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol 41:3361–3370PubMedCrossRefGoogle Scholar
  42. Olenchock BA, Guo R, Carpenter JH et al (2006a) Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 7:1174–1181PubMedCrossRefGoogle Scholar
  43. Olenchock BA, Guo R, Silverman MA et al (2006b) Impaired degranulation but enhanced cytokine production after Fc epsilonRI stimulation of diacylglycerol kinase zeta-deficient mast cells. J Exp Med 203:1471–1480PubMedCrossRefGoogle Scholar
  44. Ouyang W, Ranganath SH, Weindel K et al (1998) Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9:745–755PubMedCrossRefGoogle Scholar
  45. Pearce EL, Walsh MC, Cejas PJ et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107PubMedCrossRefGoogle Scholar
  46. Powell JD, Lerner CG, Schwartz RH (1999) Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 162:2775–2784PubMedGoogle Scholar
  47. Rao RR, Li Q, Odunsi K et al (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78PubMedCrossRefGoogle Scholar
  48. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302PubMedCrossRefGoogle Scholar
  49. Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRefGoogle Scholar
  50. Shen S, Chen Y, Gorentla BK et al (2011a) Critical roles of RasGRP1 for invariant NKT cell development. J Immunol 187:4467–4473PubMedCrossRefGoogle Scholar
  51. Shen S, Wu J, Srivatsan S et al (2011b) Tight regulation of diacylglycerol-mediated signaling is critical for proper invariant NKT cell development. J Immunol 187:2122–2129PubMedCrossRefGoogle Scholar
  52. Sinclair LV, Finlay D, Feijoo C et al (2008) Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 9:513–521PubMedCrossRefGoogle Scholar
  53. Stanfel MN, Shamieh LS, Kaeberlein M et al (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074PubMedCrossRefGoogle Scholar
  54. Sun Z, Arendt CW, Ellmeier W et al (2000) PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404:402–407PubMedCrossRefGoogle Scholar
  55. Szabo SJ, Sullivan BM, Stemmann C et al (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295:338–342PubMedCrossRefGoogle Scholar
  56. Terada N, Patel HR, Takase K et al (1994) Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA 91:11477–11481PubMedCrossRefGoogle Scholar
  57. Tognon CE, Kirk HE, Passmore LA et al (1998) Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol Cell Biol 18:6995–7008PubMedGoogle Scholar
  58. Topham MK, Prescott SM (1999) Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 274:11447–11450PubMedCrossRefGoogle Scholar
  59. van Blitterswijk WJ, Houssa B (2000) Properties and functions of diacylglycerol kinases. Cell Signal 12:595–605PubMedCrossRefGoogle Scholar
  60. Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192PubMedCrossRefGoogle Scholar
  61. Wu Q, Liu Y, Chen C et al (2011) The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J Immunol 187:1106–1112PubMedCrossRefGoogle Scholar
  62. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  63. Yang K, Neale G, Green DR et al (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12:888–897PubMedCrossRefGoogle Scholar
  64. Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24:380–386PubMedCrossRefGoogle Scholar
  65. Zheng Y, Collins SL, Lutz MA et al (2007) A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 178:2163–2170PubMedGoogle Scholar
  66. Zhong XP, Hainey EA, Olenchock BA et al (2003) Enhanced T cell responses due to diacylglycerol kinase zeta deficiency. Nat Immunol 4:882–890PubMedCrossRefGoogle Scholar
  67. Zhong XP, Guo R, Zhou H et al (2008) Diacylglycerol kinases in immune cell function and self-tolerance. Immunol Rev 224:249–264PubMedCrossRefGoogle Scholar
  68. Zhong XP, Shin J, Gorentla BK et al (2011) Receptor signaling in immune cell development and function. Immunol Res 49:109–123PubMedCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2012

Authors and Affiliations

  1. 1.Department of Pediatrics-Allergy and ImmunologyDuke University Medical CenterDurhamUSA
  2. 2.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations