Cancer Vaccines. Any Future?

  • Lukasz A. Myc
  • Andrzej Gamian
  • Andrzej MycEmail author


The idea that vaccination can be used to fight cancer is not new. Approximately 100 years ago, researchers attempted to stimulate a tumor-specific, therapeutic immune response to tumors by injecting patients with cells and extracts from their own tumors, or tumors of the same type from different individuals. During the last decade, great efforts have been made to develop immunotherapeutic approaches for the treatment of malignant diseases as alternatives to traditional chemo- and radiotherapy. A quintessential goal of immunotherapy in cancer is treatment with vaccines that elicit potent anti-tumor immune responses without side effects. In this article, we have attempted to review some of the most problematic issues facing the development of cancer vaccines. With the prospect of immunosuppression, an ill-designed cancer vaccine can be more harmful than a no-benefit therapy. We have noted that “immunoediting” and “immunodominance” are the premier setbacks in peptide-based vaccines and therefore it appears necessary not only to manipulate the activity of a vast number of principal components but also to finely tune their concentrations in time and space. In the face of all these quandaries, it is at least doubtful that any reliable anti-cancer vaccine strategy will emerge in the near future.


Adjuvant Liposomes Nanoemulsions Tumor-specific antigens Tumor-associated antigens Heteroclitic peptides Immunoediting Cytokines TH1 TH2 



We gratefully acknowledge Dr. James R. Baker, Jr. for review and critical remarks of the manuscript. We also would like to acknowledge financial support from the University of Michigan Comprehensive Cancer Center Cancer Research Committee.


  1. Allison AC (1999) Squalene and squalane emulsions as adjuvants. Methods 19:87–93PubMedCrossRefGoogle Scholar
  2. American Cancer Society (2009) Cancer, Facts & Figures 2009.
  3. Banat GA, Christ O, Cochlovius B et al (2001) Tumour-induced suppression of immune response and its correction. Cancer Immunol Immunother 49:573–586PubMedCrossRefGoogle Scholar
  4. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306PubMedCrossRefGoogle Scholar
  5. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  6. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRefGoogle Scholar
  7. Baratelli F, Lin Y et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490PubMedGoogle Scholar
  8. Barber MA, Zhang T, Gagne BA et al (2007) NK cells negatively regulate antigen presentation and tumor-specific CTLs in a syngeneic lymphoma model. J Immunol 178:6140–6147PubMedGoogle Scholar
  9. Bellone M, Iezzi G, Imro MA et al (1999) Cancer immunotherapy: synthetic and natural peptides in the balance. Immunol Today 20:457–462PubMedCrossRefGoogle Scholar
  10. Bennett SR, Carbone FR, Toy T et al (1998) B cells directly tolerize CD8(+) T cells. J Exp Med 188:1977–1983PubMedCrossRefGoogle Scholar
  11. Bergmann-Leitner ES, Abrams SI (2001) Treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes. Cancer Immunol Immunother 50:445–455PubMedCrossRefGoogle Scholar
  12. Bettelli E, Korn T, Oukka M et al (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057PubMedCrossRefGoogle Scholar
  13. Bielinska AU, Janczak KW, Landers JJ et al (2008) Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retrovir 24:271–281PubMedCrossRefGoogle Scholar
  14. Blansfield JA, Beck KE, Tran K et al (2005) Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother 28:593–598PubMedCrossRefGoogle Scholar
  15. Borowski AB, Boesteanu AC, Mueller YM et al (2007) Memory CD8+ T cells require CD28 costimulation. J Immunol 179:6494–6503PubMedGoogle Scholar
  16. Carbone FR, Kurts C, Bennett SR et al (1998) Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol Today 19:368–373PubMedCrossRefGoogle Scholar
  17. Casares N, Lasarte JJ, de Cerio AL et al (2001) Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur J Immunol 31:1780–1789PubMedCrossRefGoogle Scholar
  18. Cazet A, Julien S, Bobowski M et al (2010) Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 345:1377–1383PubMedCrossRefGoogle Scholar
  19. Chang CC, Ciubotariu R, Manavalan JS et al (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243PubMedCrossRefGoogle Scholar
  20. Cox JC, Coulter AR (1997) Adjuvants—a classification and review of their modes of action. Vaccine 15:248–256PubMedCrossRefGoogle Scholar
  21. Darzynkiewicz Z (2006) Will cancer immunotherapy fail? Scientist 20:14 (letter to editor)Google Scholar
  22. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316PubMedCrossRefGoogle Scholar
  23. Disis ML, Bernhard H, Shiota FM et al (1996) Granulocyte–macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88:202–210PubMedGoogle Scholar
  24. Durántez M, López-Vázquez AB, de Cerio AL et al (2009) Induction of multiepitopic and long-lasting immune responses against tumour antigens by immunization with peptides, DNA and recombinant adenoviruses expressing minigenes. Scand J Immunol 69:80–89PubMedCrossRefGoogle Scholar
  25. Eggermont AM (2009) Immunostimulation versus immunosuppression after multiple vaccinations: the woes of therapeutic vaccine development. Clin Cancer Res 15:6745–6747PubMedCrossRefGoogle Scholar
  26. Ernstoff MS, Crocenzi TS, Seigne JD et al (2007) Developing a rational tumor vaccine therapy for renal cell carcinoma: immune yin and yang. Clin Cancer Res 13(2 Pt 2):733s–740sPubMedCrossRefGoogle Scholar
  27. Fay JW, Palucka AK, Paczesny S et al (2006) Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol Immunother 55:1209–1218PubMedCrossRefGoogle Scholar
  28. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3:630–641PubMedCrossRefGoogle Scholar
  29. Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245–273PubMedCrossRefGoogle Scholar
  30. Fujii S, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618PubMedCrossRefGoogle Scholar
  31. Gallichan WS, Rosenthal KL (1996) Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 184:1879–1890PubMedCrossRefGoogle Scholar
  32. Ghiringhelli F, Ménard C, Terme M et al (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085PubMedCrossRefGoogle Scholar
  33. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122PubMedCrossRefGoogle Scholar
  34. Gupta RK, Rost BE, Relyveld E et al (1995) Adjuvant properties of aluminium and calcium compounds. In: Powell MF, Newman MJ (eds) Vaccine design: the subunit and vaccine approach. Plenum, New York, pp 229–248Google Scholar
  35. Gurunathan S, Sacks DL, Brown DR et al (1997) Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 186:1137–1147PubMedCrossRefGoogle Scholar
  36. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974PubMedCrossRefGoogle Scholar
  37. Han TH, Jin P, Ren J et al (2009) Evaluation of 3 clinical dendritic cell maturation protocols containing lipopolysaccharide and interferon-gamma. J Immunother 32:399–407PubMedCrossRefGoogle Scholar
  38. Hayakawa Y, Screpanti V, Yagita H et al (2004) NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol 172:123–129PubMedGoogle Scholar
  39. Huang B, Zhao J, Li H et al (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014PubMedCrossRefGoogle Scholar
  40. Jäger E, Jäger D, Knuth A (2002) Clinical cancer vaccine trials. Curr Opin Immunol 14:178–182PubMedCrossRefGoogle Scholar
  41. Janssen EM, Lemmens EE, Wolfe T et al (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856PubMedCrossRefGoogle Scholar
  42. Julien S, Picco G, Sewell R et al (2009) Sialyl-Tn vaccine induces antibody-mediated tumour protection in a relevant murine model. Br J Cancer 100:1746–1754PubMedCrossRefGoogle Scholar
  43. Kaczmarek R (2010) Alterations of Lewis histo-blood group antigen expression in cancer cells. Postepy Hig Med Dosw 64:87–99Google Scholar
  44. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188:2199–2204PubMedCrossRefGoogle Scholar
  45. Khazaie K, Bonertz A, Beckhove P (2009) Current developments with peptide-based human tumor vaccines. Curr Opin Oncol 21:524–530PubMedCrossRefGoogle Scholar
  46. Ko BK, Kawano K, Murray JL et al (2003) Clinical studies of vaccines targeting breast cancer. Clin Cancer Res 9:3222–3234PubMedGoogle Scholar
  47. Kolar P, Knieke K, Hegel JK et al (2009) CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. Arthritis Rheum 60:123–132PubMedCrossRefGoogle Scholar
  48. Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830PubMedCrossRefGoogle Scholar
  49. Langermann S (1996) New approaches to mucosal immunization. Semin Gastrointest Dis 7:12–18PubMedGoogle Scholar
  50. Levine MM, Dougan G (1998) Optimism over vaccines administered via mucosal surfaces. Lancet 351:1375–1376PubMedCrossRefGoogle Scholar
  51. Levitsky HI, Lazenby A, Hayashi RJ et al (1994) In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J Exp Med 179:1215–1224PubMedCrossRefGoogle Scholar
  52. Marciani DJ (2003) Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today 8:934–943PubMedCrossRefGoogle Scholar
  53. Martinon F, Krishnan S, Lenzen G et al (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23:1719–1722PubMedCrossRefGoogle Scholar
  54. Martin-Orozco N, Muranski P, Chung Y et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798PubMedCrossRefGoogle Scholar
  55. McGilvray RW, Eagle RA, Watson NF et al (2009) NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res 15:6993–7002PubMedCrossRefGoogle Scholar
  56. McMahan RH, McWilliams JA, Jordan KR et al (2006) Relating TCR-peptide-MHC affinity to immunogenicity for the design of tumor vaccines. J Clin Invest 116:2543–2551PubMedGoogle Scholar
  57. Miyahara Y, Odunsi K, Chen W et al (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA 105:15505–15510PubMedCrossRefGoogle Scholar
  58. Motamedi M, Arab S, Moazzeni SM et al (2009) Improvement of a dendritic cell-based therapeutic cancer vaccine with components of Toxoplasma gondii. Clin Vaccine Immunol 16:1393–1398PubMedCrossRefGoogle Scholar
  59. Muller D, Pederson K, Murray R et al (1991) A single amino acid substitution in an MHC class I molecule allows heteroclitic recognition by lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes. J Immunol 147:1392–1397PubMedGoogle Scholar
  60. Myc A, Kukowska-Latallo JF, Bielinska AU et al (2003) Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine 21:3801–3814PubMedCrossRefGoogle Scholar
  61. Nakanishi Y, Lu B, Gerard C et al (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462:510–513PubMedCrossRefGoogle Scholar
  62. Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332 [See comment]PubMedCrossRefGoogle Scholar
  63. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedCrossRefGoogle Scholar
  64. Numasaki M, Watanabe M, Suzuki T et al (2005) IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 175:6177–6189PubMedGoogle Scholar
  65. Ochsenbein AF (2002) Principles of tumor immunosurveillance and implications for immunotherapy. Cancer Gene Ther 9:1043–1055PubMedCrossRefGoogle Scholar
  66. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18PubMedCrossRefGoogle Scholar
  67. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600PubMedCrossRefGoogle Scholar
  68. Palena C, Schlom J (2010) Vaccines against human carcinomas: strategies to improve antitumor immune responses. J Biomed Biotechnol 2010:380697PubMedCrossRefGoogle Scholar
  69. Pardoll DM (1998) Cancer vaccines. Nat Med 4(5 suppl):525–531PubMedCrossRefGoogle Scholar
  70. Parmiani G, Castelli C, Dalerba P et al (2002) Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94:805–818PubMedGoogle Scholar
  71. Parmiani G, Castelli C, Pilla L et al (2007) Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18:226–232PubMedCrossRefGoogle Scholar
  72. Paul S, Acres B, Limacher JM et al (2007) Cancer vaccines: challenges and outlook in the field. IDrugs 10:324–328PubMedGoogle Scholar
  73. Qin Z, Blankenstein T (2000) CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12:677–686PubMedCrossRefGoogle Scholar
  74. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedCrossRefGoogle Scholar
  75. Renkvist N, Castelli C, Robbins PF et al (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3–15PubMedCrossRefGoogle Scholar
  76. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380–384PubMedCrossRefGoogle Scholar
  77. Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327 [See comment]PubMedCrossRefGoogle Scholar
  78. Schlom J, Tsang KY, Kantor JA et al (1999) Strategies in the development of recombinant vaccines for colon cancer. Semin Oncol 26:672–682PubMedGoogle Scholar
  79. Schuler-Thurner B, Dieckmann D, Keikavoussi P et al (2000) Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1 + melanoma patients by mature monocyte-derived dendritic cells. J Immunol 165:3492–3496PubMedGoogle Scholar
  80. Schuler-Thurner B, Schultz ES, Berger TG et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288PubMedCrossRefGoogle Scholar
  81. Sfanos KS, Bruno TC, Maris CH et al (2008) Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 14:3254–3261PubMedCrossRefGoogle Scholar
  82. Shadidi M, Sorensen D, Dybwad A et al (2008) Mucosal vaccination with phage-displayed tumour antigens identified through proteomics-based strategy inhibits the growth and metastasis of 4T1 breast adenocarcinoma. Int J Oncol 32:241–247PubMedGoogle Scholar
  83. Somasundaram R, Jacob L, Swoboda R et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62:5267–5272PubMedGoogle Scholar
  84. Speiser DE, Liénard D, Pittet MJ et al (2002) In vivo activation of melanoma-specific CD8(+) T cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T cells. Eur J Immunol 32:731–741PubMedCrossRefGoogle Scholar
  85. Srivastava MK, Sinha P, Clements VK et al (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77PubMedCrossRefGoogle Scholar
  86. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711PubMedCrossRefGoogle Scholar
  87. Stills HF Jr (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46:280–293PubMedGoogle Scholar
  88. Tesniere A, Schlemmer F, Boige V et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491PubMedCrossRefGoogle Scholar
  89. Toes RE, Ossendorp F, Offringa R et al (1999) CD4 T cells and their role in antitumor immune responses. J Exp Med 189:753–756PubMedCrossRefGoogle Scholar
  90. Tüting T, Gambotto A, DeLeo A et al (1999) Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther 6:73–80PubMedCrossRefGoogle Scholar
  91. Vajdy M, Srivastava I, Polo J et al (2004) Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol Cell Biol 82:617–627PubMedCrossRefGoogle Scholar
  92. van der Burg SH, Bijker MS, Welters MJ et al (2006) Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev 58:916–930PubMedCrossRefGoogle Scholar
  93. Vogel FR, Powell MF (1995) A compendium of vaccine adjuvants and excipients. Pharm Biotechnol 6:141–228PubMedGoogle Scholar
  94. Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277PubMedCrossRefGoogle Scholar
  95. Yamazaki S, Iyoda T, Tarbell K et al (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198:235–247PubMedCrossRefGoogle Scholar
  96. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu + tumors. Cancer Res 58:4902–4908PubMedGoogle Scholar
  97. Zarei S, Schwenter F, Luy P et al (2009) Role of GM-CSF signaling in cell-based tumor immunization. Blood 113:6658–6668PubMedCrossRefGoogle Scholar
  98. Zhang Z, Sun P, Liu J et al (2008) Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. Biochim Biophys Acta 1783:287–296PubMedCrossRefGoogle Scholar
  99. Zhang JP, Yan J, Xu J et al (2009) Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 50:980–989PubMedCrossRefGoogle Scholar
  100. Zorn E, Hercend T (1999) A MAGE-6-encoded peptide is recognized by expanded lymphocytes infiltrating a spontaneously regressing human primary melanoma lesion. Eur J Immunol 29:602–607PubMedCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2011

Authors and Affiliations

  1. 1.Department of Physiology, School of MedicineWayne State UniversityDetroitUSA
  2. 2.Ludwik Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
  3. 3.The University of Michigan, MNIMBS, MSRB IIIAnn ArborUSA

Personalised recommendations