Revisiting the Natural History of Tuberculosis

The Inclusion of Constant Reinfection, Host Tolerance, and Damage-Response Frameworks Leads to a Better Understanding of Latent Infection and its Evolution towards Active Disease
  • Pere-Joan CardonaEmail author


Once Mycobacterium tuberculosis infects a person it can persist for a long time in a process called latent tuberculosis infection (LTBI). LTBI has traditionally been considered to involve the bacilli remaining in a non-replicating state (dormant) in old lesions but still retaining their ability to induce reactivation and cause active tuberculosis (TB) once a disruption of the immune response takes place. The present review aims to challenge these concepts by including recent experimental data supporting LTBI as a constant endogenous reinfection process as well as the recently introduced concepts of damage-response and tolerance frameworks to explain TB induction. These frameworks highlight the key role of an exaggerated and intolerant host response against M. tuberculosis bacilli which induces the classical TB cavity in immunocompetent adults once the constant endogenous reinfection process has resulted in the presence of bacilli in the upper lobes, where they can grow faster and the immune response is delayed. This essay intends to provide new clues to understanding the induction of TB in non-immunosuppressed patients.


Mycobacterium tuberculosis Foamy macrophages Dynamic hypothesis Damage-framework response Tolerance theory 


  1. Andersen P (1997) Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand J Immunol 45:115–131CrossRefPubMedGoogle Scholar
  2. Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6:2764–2773CrossRefPubMedGoogle Scholar
  3. Bermudez LE, Danelishvili L, Early J (2006) Mycobacteria and macrophage apoptosis: complex struggle for survival. Microbe 1:372–375Google Scholar
  4. Bolin CA, Whipple DL, Khanna KV et al (1997) Infection of swine with Mycobacterium bovis as a model of human tuberculosis. J Infect Dis 176:1559–1566CrossRefPubMedGoogle Scholar
  5. Buchanan RE (1918) Life phases in a bacterial culture. J Infect Dis 23:109–125Google Scholar
  6. Buddle BM, Skinner MA, Wedlock DN et al (2005) Cattle as a model for development of vaccines against human tuberculosis. Tuberculosis 85:19–24CrossRefPubMedGoogle Scholar
  7. Bui TD, Dabdub D, George SC (1998) Modeling bronchial circulation with application to soluble gas exchange: description and sensitivity analysis. J Appl Physiol 84:2070–2088PubMedGoogle Scholar
  8. Caceres N, Tapia G, Ojanguren I et al (2009) Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis 89:175–182CrossRefPubMedGoogle Scholar
  9. Cardona PJ (2006) RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis 86:273–289CrossRefPubMedGoogle Scholar
  10. Cardona PJ (2007) New insights on the nature of latent tuberculosis infection and its treatment. Inflamm Allergy Drug Targets 6:27–39CrossRefPubMedGoogle Scholar
  11. Cardona PJ (2009) A dynamic reinfection hypothesis of latent tuberculosis infection. Infection 37:80–86CrossRefPubMedGoogle Scholar
  12. Cardona PJ, Llatjós R, Gordillo S et al (2000) Evolution of granulomas in mice infected aerogenically with Mycobacterium tuberculosis. Scan J Immunol 52:156–163CrossRefGoogle Scholar
  13. Cardona PJ, Gordillo S, Díaz J et al (2003) Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect Immun 71:5845–5854CrossRefPubMedGoogle Scholar
  14. Casadevall A, Pirofski LA (2003) The damage response framework of microbial pathogenesis. Nat Rev Microbiol 1:17–24CrossRefPubMedGoogle Scholar
  15. D’Avila H, Melo RC, Parreira GG et al (2006) Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176:3087–3097PubMedGoogle Scholar
  16. Dannenberg AM Jr (2006) Pathogenesis of human pulmonary tuberculosis: insights from the rabbit model. ASM Press, WashingtonGoogle Scholar
  17. Doenhoff MJ (1998) Granulomatous inflammation and the transmission of infection: schistosomiasis and TB too? Immunol Today 19:462–467CrossRefPubMedGoogle Scholar
  18. Dvorak AM, Dvorak HF, Peters SP et al (1983) Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J Immunol 131:2965–2976PubMedGoogle Scholar
  19. Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116:695–715CrossRefPubMedGoogle Scholar
  20. Garton NJ, Christensen H, Minnikin DE et al (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148(Pt 10):2951–2958PubMedGoogle Scholar
  21. Garton NJ, Waddell SJ, Sherratt AL et al (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75CrossRefPubMedGoogle Scholar
  22. Gil O, Diaz I, Vilaplana C, et al. (2009) Combined therapy with isoniazid and RUTI is safe and effective in a new latent tuberculosis infection model in mini-pigs. Keystone Symposium, Keystone, Colorado, USA, January 2009Google Scholar
  23. Gill WP, Harik NS, Whiddon MR et al (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214CrossRefPubMedGoogle Scholar
  24. Gordon S, Mwandumba H (2008) Respiratory tuberculosis. In: Barnes PF, Gordon SB, Davies PDO (eds) Clinical Tuberculosis. Hodder and Stoughton, LondonGoogle Scholar
  25. Grosset J (1980) Bacteriologic basis of short-course chemotherapy for tuberculosis. Clin Chest Med 1:231–241PubMedGoogle Scholar
  26. Grosset J (2003) Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47:833–836CrossRefPubMedGoogle Scholar
  27. Kaufmann SH, Cole ST, Mizrahi V et al (2005) Mycobacterium tuberculosis and the host response. J Exp Med 201:1693–1697CrossRefPubMedGoogle Scholar
  28. Lipman M, Breen R (2006) Immune reconstitution inflammatory syndrome in HIV. Curr Opin Infect Dis 19:20–25CrossRefPubMedGoogle Scholar
  29. Lurie MB (1964) Resistance to tuberculosis: experimental studies in native and acquired defensive mechanisms. Harvard University Press, CambridgeGoogle Scholar
  30. Martinez D, Vermeulen M, von Euw E et al (2007) Extracellular acidosis triggers the maturation of human dendritic cells and the production of IL-12. J Immunol 179:1950–1959PubMedGoogle Scholar
  31. Milic-Emili J (2005) Ventilation distribution. In: Hamid Q, Shannon J, Martin J (eds) Physiologic basis of respiratory disease. BC Decker Inc., HamiltonGoogle Scholar
  32. Mitchison DA (1979) Basic mechanisms of chemotherapy. Chest 76(6 suppl):771–781CrossRefPubMedGoogle Scholar
  33. Muñoz-Elias EJ, Timm J, Botha T et al (2005) Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun 73:546–551CrossRefPubMedGoogle Scholar
  34. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438CrossRefPubMedGoogle Scholar
  35. Orme I, Gonzalez-Juarrero M (2007) Animal models of M. tuberculosis infection. Curr Protoc Microbiol Chapter 10:Unit 10A.5Google Scholar
  36. Parish T, Stoker NG (2001) Mycobacterium tuberculosis protocols. Humana Press Inc., TotowaGoogle Scholar
  37. Park MK, Myers RA, Marzella L (1992) Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clin Infect Dis 14:720–740PubMedGoogle Scholar
  38. Peyron P, Vaubourgeix J, Poquet Y et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204CrossRefPubMedGoogle Scholar
  39. Rook GA (2007) Th2 cytokines in susceptibility to tuberculosis. Curr Mol Med 7:327–337CrossRefPubMedGoogle Scholar
  40. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126CrossRefPubMedGoogle Scholar
  41. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8:889–895CrossRefPubMedGoogle Scholar
  42. Ulrichs T, Kaufmann SH (2006) New insights into the function of granulomas in human tuberculosis. J Pathol 208:261–269CrossRefPubMedGoogle Scholar
  43. Wallace JG (1961) The heat resistance of tubercle bacilli in the lungs of infected mice. Am Rev Respir Dis 83:866–871PubMedGoogle Scholar
  44. Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163CrossRefPubMedGoogle Scholar
  45. Wolf AJ, Desvignes L, Linas B et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115CrossRefPubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2009

Authors and Affiliations

  1. 1.Unitat de Tuberculosi Experimental, Department of Microbiology, Fundació Institut per a la Investigació en Ciències de la Salut Germans Trias i PujolUniversitat Autònoma de BarcelonaBadalonaSpain
  2. 2.CIBER Enfermedades RespiratoriasPalma de MallorcaSpain

Personalised recommendations