Exploring the immune response against Mycobacterium tuberculosis for a better diagnosis of the infection

  • Giovanni Ferrara
  • Monica Losi
  • Leonardo M. Fabbri
  • Giovanni B. Migliori
  • Luca Richeldi
  • Lucio Casali


Tuberculosis (TB) still represents a monumental problem, with more than two million deaths every year worldwide. The current diagnostics for TB offer sub-optimal accuracy both for the active and the latent form of infection and are often based on technologies unaffordable in low-income settings. The tuberculin skin test was the first diagnostic based on an acquired immune response towards Mycobacterium tuberculosis (MTB). Advances in molecular and cellular biology and the elucidation of the mechanisms governing the relation between MTB and the human immune system form the basis for new and more accurate assays, potentially able to fill the gaps and limits of classical diagnostics. However, the process of validating new tests is still complex and hampered by specific questions regarding TB immunology and natural history. We present here a summary of the current approaches to validate new diagnostics based on the detection of immunological biomarkers of TB infection.


tuberculosis acquired immune response latent tuberculosis infection diagnosis new tools 


  1. Abebe F, Holm-Hansen C, Wiker HG et al (2007) Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand J Immunol 66: 176–191CrossRefPubMedGoogle Scholar
  2. Aggerbeck H, Madsen SM (2006) Safety of ESAT-6. Tuberculosis 86: 363–373CrossRefPubMedGoogle Scholar
  3. American Thoracic Society (2000) Targeted tuberculin testing and treatment of latent tuberculosis infection. Am J Respir Crit Care Med 161(suppl): S221–247Google Scholar
  4. Amicosante M, Barnini S, Corsini V et al (1995) Evaluation of a novel tuberculosis complex-specific 34 kDa protein in the serological diagnosis of tuberculosis. Eur Respir J 8: 2008–2014CrossRefPubMedGoogle Scholar
  5. Arend SM, Franken WP, Aggerbeck H (2008) Double-blind randomized Phase I study comparing rdESAT-6 to tuberculin as skin test reagent in the diagnosis of tuberculosis infection. Tuberculosis 88: 249–261CrossRefPubMedGoogle Scholar
  6. Bakir M, Millington KA, Soysal A et al (2008) Prognostic value of a T-cell-based, interferon-gamma biomarker in children with tuberculosis contact. Ann Intern Med 149: 777–787PubMedGoogle Scholar
  7. Boom WH, Canaday DH, Fulton SA et al (2003) Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis 83: 98–106CrossRefPubMedGoogle Scholar
  8. Breen RA, Barry SM, Smith CJ et al (2008) Clinical application of a rapid lung-orientated immunoassay in individuals with possible tuberculosis. Thorax 63: 67–71CrossRefPubMedGoogle Scholar
  9. Breen RA, Hardy GA, Perrin FM et al (2007) Rapid diagnosis of smear-negative tuberculosis using immunology and microbiology with induced sputum in HIV-infected and uninfected individuals. PLoS One 2: e1335CrossRefPubMedGoogle Scholar
  10. Brock I, Weldingh K, Lillebaek T et al (2004) Comparison of tuberculin skin test and new specific blood test in tuberculosis contacts. Am J Respir Crit Care Med 170: 65–69CrossRefPubMedGoogle Scholar
  11. Carrara S, Vincenti D, Petrosillo N et al (2004) Use of a T cell- -based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis 38: 754–756CrossRefPubMedGoogle Scholar
  12. Chee CB, KhinMar KW, Gan SH et al (2007) Latent tuberculosis infection treatment and T-cell responses to Mycobacterium tuberculosis-specific antigens. Am J Respir Crit Care Med 175: 282–287CrossRefPubMedGoogle Scholar
  13. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544CrossRefPubMedGoogle Scholar
  14. Contini S, Pallante M, Vejbaesya S et al (2008) A model of phenotypic susceptibility to tuberculosis: deficient in silico selection of Mycobacterium tuberculosis epitopes by HLA alleles. Sarcoidosis Vasc Diffuse Lung Dis 25: 21–28PubMedGoogle Scholar
  15. Demissie A, Ravn P, Olobo J et al (1999) T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts. Infect Immun 67: 5967–5971PubMedGoogle Scholar
  16. Dheda K, Lalvani A, Miller RF et al (2005) Performance of a T-cell-based diagnostic test for tuberculosis infection in HIV- -infected individuals is independent of CD4 cell count. AIDS 19: 2038–2041CrossRefPubMedGoogle Scholar
  17. Dheda K, Pooran A, Pai M et al (2007) Interpretation of Mycobacterium tuberculosis antigen-specific IFN-gamma release assays (T-SPOT. TB) and factors that may modulate test results. J Infect 55: 169–173Google Scholar
  18. Diel R, Loddenkemper R, Meywald-Walter K et al (2008) Predictive value of a whole blood IFN-gamma assay for the development of active tuberculosis disease after recent infection with Mycobacterium tuberculosis. Am J Respir Crit Care Med 177: 1164–1170CrossRefPubMedGoogle Scholar
  19. European Medicines Agency (2008) Guideline on Clinical Evaluation of Diagnostic Agents. CPMP/EWP/1119/98/Rev 1Google Scholar
  20. Ferrara G, Bleck B, Richeldi L et al (2008) Mycobacterium tuberculosis induces CCL18 expression in human macrophages. Scand J Immunol 68: 668–674PubMedGoogle Scholar
  21. Ferrara G, Losi M, D’Amico R et al (2006) Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study. Lancet 367: 1328–1334CrossRefPubMedGoogle Scholar
  22. Ferrara G, Losi M, Meacci M et al (2005) Routine hospital use of a new commercial whole blood interferon-gamma assay for the diagnosis of tuberculosis infection. Am J Respir Crit Care Med 172: 631–635CrossRefPubMedGoogle Scholar
  23. Feske M, Nudelman RJ, Medina M et al (2008) Enhancement of human antigen-specific memory T-cell responses by interleukin- 7 may improve accuracy in diagnosing tuberculosis. Clin Vaccine Immunol 15: 1616–1622CrossRefPubMedGoogle Scholar
  24. Flynn JL (2004) Immunology of tuberculosis and implications in vaccine development. Tuberculosis 84: 93–101CrossRefPubMedGoogle Scholar
  25. Gaseitsiwe S, Valentini D, Mahdavifar S et al (2008) Pattern recognition in pulmonary tuberculosis defined by high content peptide microarray chip analysis representing 61 proteins from M. tuberculosis. PLoS One 3: e3840CrossRefPubMedGoogle Scholar
  26. Geluk A, Lin MY, van Meijgaarden KE et al (2007) T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun 75: 2914–2921CrossRefPubMedGoogle Scholar
  27. Hill PC, Jackson-Sillah DJ, Fox A et al (2008) Incidence of tuberculosis and the predictive value of ELISPOT and Mantoux tests in Gambian case contacts. PLoS One 3: e1379CrossRefPubMedGoogle Scholar
  28. Hoff ST, Abebe M, Ravn P et al (2007) Evaluation of Mycobacterium tuberculosis–specific antibody responses in populations with different levels of exposure from Tanzania, Ethiopia, Brazil, and Denmark. Clin Infect Dis 45: 575–582CrossRefPubMedGoogle Scholar
  29. Höhn H, Kortsik C, Zehbe I et al (2007) MHC class II tetramer guided detection of Mycobacterium tuberculosis-specific CD4+ T cells in peripheral blood from patients with pulmonary tuberculosis. Scand J Immunol 65: 467–478CrossRefPubMedGoogle Scholar
  30. Horsburgh CR (2004) Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med 350: 2060–2067CrossRefPubMedGoogle Scholar
  31. Huebner RE, Schein MF, Bass JB Jr (1993) The tuberculin skin test. Clin Infect Dis 17: 968–975PubMedGoogle Scholar
  32. Jacobsen M, Mattow J, Repsilber D et al (2008) Novel strategies to identify biomarkers in tuberculosis. Biol Chem 389: 487–495CrossRefPubMedGoogle Scholar
  33. Jafari C, Ernst M, Kalsdorf B et al (2006) Rapid diagnosis of smear-negative tuberculosis by bronchoalveolar lavage enzyme- -linked immunospot. Am J Respir Crit Care Med 174: 1048–1054CrossRefPubMedGoogle Scholar
  34. Janssens JP, Roux-Lombard P, Perneger T et al (2007) Quantitative scoring of an interferon-gamma assay for differentiating active from latent tuberculosis. Eur J Resp 30: 722–728CrossRefGoogle Scholar
  35. Kaufmann SH, Winau F (2005) From bacteriology to immunology: the dualism of specificity. Nat Immunol 6: 1063–1066CrossRefPubMedGoogle Scholar
  36. Khan IH, Ravindran R, Yee J et al (2008) Profiling antibodies to Mycobacterium tuberculosis by multiplex microbead suspension arrays for serodiagnosis of tuberculosis. Clin Vaccine Immunol 15: 433–438CrossRefPubMedGoogle Scholar
  37. Kusner DJ (2005) Mechanisms of mycobacterial persistence in tuberculosis. Clin Immunol 114: 239–247CrossRefPubMedGoogle Scholar
  38. Lalvani A (2007) Diagnosing tuberculosis infection in the 21st century: new tools to tackle an old enemy. Chest 131: 1898–1906CrossRefPubMedGoogle Scholar
  39. Lalvani A, Brookes R, Wilkinson RJ et al (1998) Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci USA 95: 270–275CrossRefPubMedGoogle Scholar
  40. Lalvani A, Nagvenkar P, Udwadia Z et al (2001) Enumeration of T cells specific for RD1-encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis 183: 469–477CrossRefPubMedGoogle Scholar
  41. Leung WL, Law KL, Leung VS et al (2009) Comparison of intracellular cytokine flow cytometry and an enzyme immunoassay for evaluation of cellular immune response to active tuberculosis. Clin Vaccine Immunol 16: 344–351CrossRefPubMedGoogle Scholar
  42. Leyten EM, Arend SM, Prins C et al (2007) Discrepancy between Mycobacterium tuberculosis-specific gamma interferon release assays using short and prolonged in vitro incubation. Clin Vaccine Immunol 14: 880–885CrossRefPubMedGoogle Scholar
  43. Liebeschuetz S, Bamber S, Ewer K et al (2004) Diagnosis of tuberculosis in South African children with a T-cell-based assay: a prospective cohort study. Lancet 364: 2196–2203CrossRefPubMedGoogle Scholar
  44. Losi M, Bossink A, Codecasa L et al (2007) Use of a T-cell interferon-gamma release assay for the diagnosis of tuberculous pleurisy. Eur Respir J 30: 1173–1179CrossRefPubMedGoogle Scholar
  45. Mazurek GH, Weis SE, Moonan PK et al (2007) Prospective comparison of the tuberculin skin test and 2 whole-blood interferon- gamma release assays in persons with suspected tuberculosis. Clin Infect Dis 45: 837–845CrossRefPubMedGoogle Scholar
  46. Menzies D (1999) Interpretation of repeated tuberculin tests. Boosting, conversion, and reversion. Am J Respir Crit Care Med 159: 15–21Google Scholar
  47. Mori T, Harada N, Higuchi K et al (2007) Waning of the specific interferon-gamma response after years of tuberculosis infection. Int J Tuberc Lung Dis 11: 1021–1025PubMedGoogle Scholar
  48. Mori T, Sakatani M, Yamagishi F et al (2004) Specific detection of tuberculosis infection: an interferon-gamma-based assay using new antigens. Am J Respir Crit Care Med 170: 59–64CrossRefPubMedGoogle Scholar
  49. Morner M (2006) Nya tbc-tester ger säkrare resultat. Smittskydd 3: 2006Google Scholar
  50. Nakamura RM, Einck L, Velmonte MA et al (2001) Detection of active tuberculosis by an MPB-64 transdermal patch: a field study. Scand J Infect Dis 33: 405–407CrossRefPubMedGoogle Scholar
  51. Pai M, Zwerling A, Menzies D (2008) Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 149: 177–184PubMedGoogle Scholar
  52. Perkins MD, Cunningham J (2007) Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis 196(suppl 1): S15–27CrossRefPubMedGoogle Scholar
  53. Reed JR, Vukmanovic-Stejic M, Fletcher JM et al (2004) Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J Exp Med 199: 1433–1443CrossRefPubMedGoogle Scholar
  54. Richeldi L, Ewer K, Losi M et al (2004) T cell-based tracking of multidrug resistant tuberculosis infection after brief exposure. Am J Respir Crit Care Med 170: 288–295CrossRefPubMedGoogle Scholar
  55. Richeldi L, Losi M, D’Amico R et al (2009) Performance of tests for latent tuberculosis in different groups of immunocompromised patients. Chest 136: 198–204CrossRefPubMedGoogle Scholar
  56. Rieder HL (1999) Epidemiologic basis of tuberculosis control (Paris): International Union Against Tuberculosis and Lung DiseaseGoogle Scholar
  57. Rook GA, Stanford JL (1996) The Koch phenomenon and the immunopathology of tuberculosis. Curr Top Microbiol Immunol 215: 239–262PubMedGoogle Scholar
  58. Ruhwald M, Bjerregaard-Andersen M, Rabna P et al (2009) IP-10, MCP-1, MCP-2, MCP-3, and IL-1RA hold promise as biomarkers for infection with M. tuberculosis in a whole blood based T-cell assay. BMC Res Notes 2: 19CrossRefPubMedGoogle Scholar
  59. Ruhwald M, Bodmer T, Maier C et al (2008) Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of tuberculosis. Eur Respir J 32: 1607–1615CrossRefPubMedGoogle Scholar
  60. Ruhwald M, Petersen J, Kofoed K et al (2008) Improving T-cell assays for the diagnosis of latent TB infection: potential of a diagnostic test based on IP-10. PLoS One 3: e2858CrossRefPubMedGoogle Scholar
  61. Sackett DL, Haynes RB (2002) The architecture of diagnostic research. BMJ 324: 539–541CrossRefPubMedGoogle Scholar
  62. Salgame P (2005) Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 17: 374–380CrossRefPubMedGoogle Scholar
  63. Steingart KR, Dendukuri N, Henry M et al (2009) Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin Vaccine Immunol 16: 260–276CrossRefPubMedGoogle Scholar
  64. Steingart KR, Henry M, Laal S et al (2007) A systematic review of commercial serological antibody detection tests for the diagnosis of extrapulmonary tuberculosis. Thorax 62: 911–918PubMedGoogle Scholar
  65. Steingart KR, Ramsay A, Pai M (2007) Commercial serological tests for the diagnosis of tuberculosis: do they work. Future Microbiol 2: 355–359CrossRefPubMedGoogle Scholar
  66. Thomas MM, Hinks TS, Raghuraman S et al (2008) Rapid diagnosis of Mycobacterium tuberculosis meningitis by enumeration of cerebrospinal fluid antigen-specific T-cells. Int J Tuberc Lung Dis 12: 651–657PubMedGoogle Scholar
  67. Vergne I, Chua J, Lee H et al (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102: 4033–4038CrossRefPubMedGoogle Scholar
  68. Vukmanovic-Stejic M, Agius E, Booth N et al (2008) The kinetics of CD4+Foxp3+ T cell accumulation during a human cutaneous antigen-specific memory response in vivo. J Clin Invest 118: 3639–3650CrossRefPubMedGoogle Scholar
  69. Vukmanovic-Stejic M, Reed JR, Lacy KE et al (2006) Mantoux Test as a model for a secondary immune response in humans. Immunol Lett 107: 93–101CrossRefPubMedGoogle Scholar
  70. World Health Organization (2008) Global Tuberculosis Control Report: surveillance, planning, financing: WHO report 2008 (Geneva, Switzerland: WHO)Google Scholar
  71. Wu B, Huang C, Kato-Maeda M et al (2007) Messenger RNA expression of IL-8, FOXP3, and IL-12beta differentiates latent tuberculosis infection from disease. J Immunol 178: 3688–3694PubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2009

Authors and Affiliations

  • Giovanni Ferrara
    • 1
  • Monica Losi
    • 2
    • 3
  • Leonardo M. Fabbri
    • 3
  • Giovanni B. Migliori
    • 4
  • Luca Richeldi
    • 2
    • 3
  • Lucio Casali
    • 1
  1. 1.Section of Respiratory Disease, Department of Internal Medicine, St. Maria HospitalUniversity of PerugiaTerniItaly
  2. 2.Center for Rare Lung DiseasesUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Sections of Respiratory Diseases, Department of Oncology and HematologyUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research InstituteTradateItaly

Personalised recommendations