Dendritic cell-based cancer immunotherapies

  • Shin-ichiro Fujii
  • Takuya Takayama
  • Miki Asakura
  • Kaori Aki
  • Koji Fujimoto
  • Kanako Shimizu
Review

Abstract

Because of their unique role in linking the innate and adaptive immune systems, dendritic cells (DCs) have been a logical focus for novel immunotherapies. However, strategies employing active immunization with ex vivo generated and antigen–pulsed DCs have shown limited efficacy in clinical trials. These past approaches did not take into account the complex interactions between cells of the innate immune system and DCs during DC maturation, antigen processing, and presentation to naïve T cells. By better understanding the natural sequence of events occurring in vivo during an effective immune response, we can tailor antitumor immunotherapeutic strategies to augment aspects of this response from the activation of innate immune cells to antigen uptake and DC maturation to priming of naïve T cells and, ultimately, to the establishment of antitumor immunity. Current DC vaccination strategies utilize a number of methods to recapitulate the cascade of events that culminate in a protective antitumor immune response.

Keywords

dendritic cells (DCs) adjuvant ex vivo DC therapy in vivo DC therapy immunotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams S, O’Neill DW, Nonaka D et al (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181: 776–784PubMedGoogle Scholar
  2. Ahonen CL, Doxsee CL, McGurran SM et al (2004) Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 199: 775–784PubMedCrossRefGoogle Scholar
  3. Antonia S, Mule JJ, Weber JS (2004) Current developments of immunotherapy in the clinic. Curr Opin Immunol 16: 130–136PubMedCrossRefGoogle Scholar
  4. Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435–442PubMedCrossRefGoogle Scholar
  5. Aspord C, Pedroza-Gonzalez A, Gallegos M et al (2007) Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 204: 1037–1047PubMedCrossRefGoogle Scholar
  6. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5: 296–306PubMedCrossRefGoogle Scholar
  7. Basu S, Binder RJ, Ramalingam T et al (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14: 303–313PubMedCrossRefGoogle Scholar
  8. Basu S, Binder R, Suto R et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF- B pathway. Int Immunol 12: 1539–1546PubMedCrossRefGoogle Scholar
  9. Berzofsky JA, Terabe M (2008) NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180: 3627–3635PubMedGoogle Scholar
  10. Beutner KR, Geisse JK, Helman D et al (1999) Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol 41: 1002–1007PubMedCrossRefGoogle Scholar
  11. Bezbradica JS, Stanic AK, Matsuki N et al (2005) Distinct roles of dendritic cells and B cells in Vα14Jα18 natural T cell activation in vivo. J Immunol 174:4 696–705Google Scholar
  12. Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64: 442–441PubMedCrossRefGoogle Scholar
  13. Butowski N, Lamborn KR, Lee BL et al (2009) A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J Neurooncol 91: 183–189PubMedCrossRefGoogle Scholar
  14. Chang DH, Osman K, Connolly J et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201: 1503–1517PubMedCrossRefGoogle Scholar
  15. Chomarat P, Dantin C, Bennett L et al (2003) TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 171: 2262–2269PubMedGoogle Scholar
  16. Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27: 352–357PubMedCrossRefGoogle Scholar
  17. Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20: 241–246PubMedCrossRefGoogle Scholar
  18. Datta SK, Cho HJ, Takabayashi K et al (2004) Antigen-immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol Rev 199: 217–226PubMedCrossRefGoogle Scholar
  19. Davis ID, Jefford M, Parente P et al (2003) Rational approaches to human cancer immunotherapy. J Leukoc Biol 73: 3–29PubMedCrossRefGoogle Scholar
  20. Delano MJ, Scumpia PO, Weinstein JS et al (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204: 1463–1474PubMedCrossRefGoogle Scholar
  21. Dranoff G, Jaffee E, Lazenby A et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophate colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90: 3539–3543PubMedCrossRefGoogle Scholar
  22. Endharti AT, Rifa’I M, Shi Z et al (2005) Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol 175: 7093–7097PubMedGoogle Scholar
  23. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3: 630–641PubMedCrossRefGoogle Scholar
  24. Fujii S, Fujimoto K, Shimizu K et al (1999) Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients. Cancer Res 59: 2150–2158PubMedGoogle Scholar
  25. Fujii S, Shimizu K, Hemmi H et al (2007) Innate Va14+ natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220: 183–198PubMedCrossRefGoogle Scholar
  26. Fujii S, Shimizu K, Kronenberg M et al (2002) Prolonged interferon-γ producing NKT response induced with α-galactosylceramide-loaded dendritic cells. Nat Immunol 3: 867–874PubMedCrossRefGoogle Scholar
  27. Gehrmann M, Schmetzer H, Eissner G et al (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88: 474–476PubMedGoogle Scholar
  28. Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117: 1195–1203PubMedCrossRefGoogle Scholar
  29. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199: 251–263PubMedCrossRefGoogle Scholar
  30. Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16: 111–135PubMedCrossRefGoogle Scholar
  31. Hege KM, Jooss K, Pardoll D (2006) GM-CSF gene-modified cancer cell immunotherapies: of mice and men. Int Rev Immunol 25: 321–352PubMedCrossRefGoogle Scholar
  32. Heiser A, Coleman D, Dannull J et al (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109: 409–417PubMedGoogle Scholar
  33. Heiser A, Dahm P, Yancey D et al (2000) Human dendritic cells transfected with RNA encoding prostate specific antigen (PSA) stimulate prostate specific CTL responses in vitro. J Immunol 164: 5508–5514PubMedGoogle Scholar
  34. Heiser A, Maurice MA, Yancey DR et al (2001) Induction of polyclonal prostate cancer-specific ctl using dendritic cells transfected with amplified tumor rna. J Immunol 166: 2953–2960PubMedGoogle Scholar
  35. Heit A, Schmitz F, O’Keeffe M et al (2005) Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J Immunol 174: 4373–4380PubMedGoogle Scholar
  36. Higano CS, Corman JM, Smith DC et al (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113: 975–984PubMedCrossRefGoogle Scholar
  37. Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66: 1123–1131PubMedCrossRefGoogle Scholar
  38. Inaba K, Inaba M, Romani N et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693–1702PubMedCrossRefGoogle Scholar
  39. Ishikawa A, Motohashi S, Ishikawa E et al (2005) A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11: 1910–1917PubMedCrossRefGoogle Scholar
  40. Jaffee EM, Abrams R, Cameron J et al (1998) A phase I clinical trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum Gene Ther 9: 1951–1971PubMedCrossRefGoogle Scholar
  41. Jaffee EM, Hruban RH, Biedrzycki B et al (2001) Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 19: 145–156PubMedGoogle Scholar
  42. Jonuleit H, Kuhn U, Muller G et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27: 3135–3142PubMedCrossRefGoogle Scholar
  43. Larmonier N, Marron M, Zeng Y et al (2007) Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10. Cancer Immunol Immunother 56: 48–59PubMedCrossRefGoogle Scholar
  44. Larmonier N, Merino D, Nicolas A et al (2006) Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading. Apoptosis 11: 1513–1524PubMedCrossRefGoogle Scholar
  45. Lewis JJ (2004) Therapeutic cancer vaccines: using unique antigens. Proc Natl Acad Sci USA 101(suppl 2): 14653–14656PubMedCrossRefGoogle Scholar
  46. Luft T, Pang KC, Thomas E et al (1998) Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 161: 1947–1953PubMedGoogle Scholar
  47. Manegold C, Gravenor D, Woytowitz D et al (2008) Randomized phase II trial of a Toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol 26: 3979–3986PubMedCrossRefGoogle Scholar
  48. Marigo I, Dolcetti L, Serafini P et al (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222: 162–179PubMedCrossRefGoogle Scholar
  49. Mazzaferro V, Coppa J, Carrabba M et al (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9: 3235–3245PubMedGoogle Scholar
  50. Melcher A, Gough M, Todryk S et al (1999) Apoptosis or necrosis for tumor immunotherapy: what’s in a name?. J Mol Med 77: 824–833PubMedCrossRefGoogle Scholar
  51. Misra N, Bayry J, Lacroix-Desmazes S et al (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172: 4676–4680PubMedGoogle Scholar
  52. Mohamadzadeh M, Berard F, Essert G et al (2001) Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J Exp Med 194: 1013–1020PubMedCrossRefGoogle Scholar
  53. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68: 2561–2563PubMedCrossRefGoogle Scholar
  54. Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13: 828–835PubMedCrossRefGoogle Scholar
  55. Nair SK, Boczkowski D, Morse M et al (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16: 364–369PubMedCrossRefGoogle Scholar
  56. Nair SK, Heiser A, Boczkowski D et al (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6: 1011–1017PubMedCrossRefGoogle Scholar
  57. Nemunaitis J, Jahan T, Ross H et al (2006) Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 13: 555–562PubMedCrossRefGoogle Scholar
  58. Nieda M, Okai M, Tazbirkova A et al (2004) Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103: 383–389PubMedCrossRefGoogle Scholar
  59. Palucka AK, Ueno H, Connolly J et al (2006) Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother 29: 545–557PubMedCrossRefGoogle Scholar
  60. Paquette RL, Hsu NC, Kiertscher SM et al (1998) Interferon-α and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukoc Biol 64: 358–367PubMedGoogle Scholar
  61. Parekh VV, Wilson MT, Olivares-Villagomez D et al (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115: 2572–2583PubMedCrossRefGoogle Scholar
  62. Parkhurst MR, Salgaller ML, Southwood S et al (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157: 2539–2548PubMedGoogle Scholar
  63. Prasad SJ, Farrand KJ, Matthews SA et al (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 174: 90–98PubMedGoogle Scholar
  64. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T helper and a T-killer cell. Nature 393: 474–478PubMedCrossRefGoogle Scholar
  65. Rifa’i M, Kawamoto Y, Nakashima I et al (2004) Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 200: 1123–1134PubMedCrossRefGoogle Scholar
  66. Romani N, Gruner S, Brang D et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180: 83–93PubMedCrossRefGoogle Scholar
  67. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10: 909–915PubMedCrossRefGoogle Scholar
  68. Salgaller ML, Marincola FM, Cormier JN et al (1996) Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res 56: 4749–4757PubMedGoogle Scholar
  69. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Exp Med 179: 1109–1118CrossRefGoogle Scholar
  70. Sanchez PJ, McWilliams JA, Haluszczak C et al (2007) Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo. J Immunol 178: 1564–1572PubMedGoogle Scholar
  71. Santini SM, Lapenta C, Logozzi M et al (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191: 1777–1788PubMedCrossRefGoogle Scholar
  72. Sauter B, Albert ML, Francisco L et al (2000) Consequences of cell death. Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191: 423–434Google Scholar
  73. Schmitt E, Gehrmann M, Brunet M et al (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81: 15–27PubMedCrossRefGoogle Scholar
  74. Schnurr M, Scholz C, Rothenfusser S et al (2002) Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK γδ and d T cells. Cancer Res. 62: 2347–2352PubMedGoogle Scholar
  75. Schoenberger SP, Toes RE, van der Voort EI et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480–483PubMedCrossRefGoogle Scholar
  76. Serafini P, Mgebroff S, Noonan K et al (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68: 5439–5449PubMedCrossRefGoogle Scholar
  77. Shimizu K, Goto A, Fukui M et al (2007) Tumor cells loaded with α-galactosylceramide Induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J Immunol 178: 2853–2861PubMedGoogle Scholar
  78. Shimizu K, Kurosawa Y, Taniguchi M et al (2007) Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204: 2641–2653PubMedCrossRefGoogle Scholar
  79. Silk JD, Salio M, Reddy BG et al (2008) Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180: 6452–6456PubMedGoogle Scholar
  80. Simons JW, Carducci MA, Mikhak B et al (2006) Phase I/II trial of an allogeneic cellular immunotherapy in hormonenaive prostate cancer. Clin Cancer Res 12: 3394–3401PubMedCrossRefGoogle Scholar
  81. Simons JW, Jaffee EM, Weber CE et al (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 57: 1537–1546PubMedGoogle Scholar
  82. Small EJ, Sacks N, Nemunaitis J et al (2007) Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res 13: 3883–3891PubMedCrossRefGoogle Scholar
  83. Soiffer R, Lynch T, Mihm M et al (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95: 13141–13146PubMedCrossRefGoogle Scholar
  84. Solinger AM, Ultee ME, Margoliash E et al (1979) T-lymphocyte response to cytochrome c. I. Demonstration of a T-cell heteroclitic proliferative response and identification of a topographic antigenic determinant on pigeon cytochrome c whose immune recognition requires two complementing major histocompatibility complex-linked immune response genes. J Exp Med 150: 830–848PubMedCrossRefGoogle Scholar
  85. Solit AB, Osman I, Polsky D et al (2008) Phase II trial of 17–allyamino-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14: 8302–8307PubMedCrossRefGoogle Scholar
  86. Srivastava P (2002a) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2: 185–194PubMedCrossRefGoogle Scholar
  87. Srivastava P (2002b) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20: 395–425PubMedCrossRefGoogle Scholar
  88. Stuge TB, Holmes SP, Saharan S et al (2004) Diversity and recognition efficiency of T cell responses to cancer. PLoS Med 1: e28 Su Z, Dannull J, Yang BK et al–2005 Telomerase mRNA transfected dendritic cells stimulate antigenspecific CD8 and CD4 T cell responses in patients with metastatic prostate cancer J Immunol 17437983807CrossRefGoogle Scholar
  89. Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355: 1018–1028PubMedCrossRefGoogle Scholar
  90. Tacken PJ, de Vries IJ, Torensma R et al (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7: 790–802PubMedCrossRefGoogle Scholar
  91. Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28: 491–496PubMedCrossRefGoogle Scholar
  92. Testori A, Richards J, Whitman E et al (2008) Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 26: 955–962PubMedCrossRefGoogle Scholar
  93. Todryk SM, Melcher AA, Dalgleish AG et al (2000) Heat shock proteins refine the danger theory. Immunology 99: 334–337PubMedCrossRefGoogle Scholar
  94. Urba WJ, Nemunaitis J, Marshall F et al (2008) Treatment of biochemical recurrence of prostate cancer with granulocyte-macrophage colony-stimulating factor secreting, allogeneic, cellular immunotherapy. J Urol 180: 2011–2018PubMedCrossRefGoogle Scholar
  95. van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol 27: 49–55PubMedCrossRefGoogle Scholar
  96. Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25: 876–883PubMedCrossRefGoogle Scholar
  97. Wang Y, Kelly CG, Singh M et al (2002) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169: 2422–2429PubMedGoogle Scholar
  98. Wille-Reece U, Flynn BJ, Lore K et al (2005) HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci USA 102: 15190–15194PubMedCrossRefGoogle Scholar
  99. Yarovinsky F, Kanzler H, Hieny S et al (2006) Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25: 655–664PubMedCrossRefGoogle Scholar
  100. Wood C, Srivastava P, Bukowski R et al (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicenter, open-label, randomised phase III trial. Lancet 372: 145–154PubMedCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2009

Authors and Affiliations

  • Shin-ichiro Fujii
    • 1
  • Takuya Takayama
    • 2
  • Miki Asakura
    • 1
  • Kaori Aki
    • 1
  • Koji Fujimoto
    • 3
  • Kanako Shimizu
    • 1
    • 4
  1. 1.Research Unit for Cellular Immunotherapy, Research Center for Allergy and Immunology (RCAI)Institute of Physical and Chemical Research (RIKEN), Yokohama RIKENYokohama, KanagawaJapan
  2. 2.Division of Cancer GenomicsCancer Institute (Japanese Foundation for Cancer Research)TokyoJapan
  3. 3.NTT West Kyushu Hospital, KumamotoKumamotoJapan
  4. 4.Research Unit for Therapeutic Model, Research Center for Allergy and Immunology (RCAI)Institute of Physical and Chemical Research (RIKEN)Yokohama, KanagawaJapan

Personalised recommendations