The roles of the RAG1 and RAG2 “non-core” regions in V(D)J recombination and lymphocyte development



The enormous repertoire of the vertebrate specific immune system relies on the rearrangement of discrete gene segments into intact antigen receptor genes during the early stages of B-and T-cell development. This V(D)J recombination is initiated by a lymphoid-specific recombinase comprising the RAG1 and RAG2 proteins, which introduces double-strand breaks in the DNA adjacent to the coding segments. Much of the biochemical research into V(D)J recombination has focused on truncated or “core” fragments of RAG1 and RAG2, which lack approximately one third of the amino acids from each. However, genetic analyses of SCID and Omenn syndrome patients indicate that residues outside the cores are essential to normal immune development. This is in agreement with the striking degree of conservation across all vertebrate classes in certain non-core domains. Work from multiple laboratories has shed light on activities resident within these domains, including ubiquitin ligase activity and KPNA1 binding by the RING finger domain of RAG1 and the recognition of specific chromatin modifications as well as phosphoinositide binding by the PHD module of RAG2. In addition, elements outside of the cores are necessary for regulated protein expression and turnover. Here the current state of knowledge is reviewed regarding the non-core regions of RAG1 and RAG2 and how these findings contribute to our broader understanding of recombination.


V(D)J recombination RAG1 RAG2 RING finger PHD domain/plant homeodomain 


  1. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744-751CrossRefPubMedGoogle Scholar
  2. Agrawal A, Schatz DG (1997) RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89: 43-53CrossRefPubMedGoogle Scholar
  3. Akamatsu Y, Monroe R, Dudley DD et al (2003) Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice. Proc Natl Acad Sci USA 100: 1209-1214CrossRefPubMedGoogle Scholar
  4. Bellon SF, Rodgers KK, Schatz DG et al (1997) Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat Struct Biol 4: 586-591CrossRefPubMedGoogle Scholar
  5. Chatterji M, Tsai CL, Schatz DG (2006) Mobilization of RAG-generated signal ends by transposition and insertion in vivo. Mol Cell Biol 26: 1558-1568CrossRefPubMedGoogle Scholar
  6. Chen HT, Bhandoola A, Difilippantonio MJ et al (2000) Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290: 1962-1965CrossRefPubMedGoogle Scholar
  7. Clatworthy AE, Valencia MA, Haber JE et al (2003) V(D)J recombination and RAG-mediated transposition in yeast. Mol Cell 12: 489-499CrossRefPubMedGoogle Scholar
  8. Cortes P, Ye ZS, Baltimore D (1994) RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1. Proc Natl Acad Sci USA 91: 7633-7637CrossRefPubMedGoogle Scholar
  9. Cuomo CA, Kirch SA, Gyuris J et al (1994) Rch1, a protein that specifically interacts with the RAG-1 recombination-activating protein. Proc Natl Acad Sci USA 91: 6156-6160CrossRefPubMedGoogle Scholar
  10. Desiderio S, Lin WC, Li Z (1996) The cell cycle and V(D)J recombination. Curr Top Microbiol Immunol 217: 45-49PubMedGoogle Scholar
  11. Dudley DD, Sekiguchi J, Zhu C et al (2003) Impaired V(D)J recombination and lymphocyte development in core RAG1-expressing mice. J Exp Med 198: 1439-1450CrossRefPubMedGoogle Scholar
  12. Eastman QM, Leu TM, Schatz DG (1996) Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380: 85-88CrossRefPubMedGoogle Scholar
  13. Elkin SK, Ivanov D, Ewalt M et al (2005) A PHD finger motif in the C terminus of RAG2 modulates recombination activity. J Biol Chem 280: 28701-28710CrossRefPubMedGoogle Scholar
  14. Elkin SK, Matthews A, Oettinger M (2003) The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 22: 1931-1938CrossRefPubMedGoogle Scholar
  15. Fugmann SD, Messier C, Novack LA et al (2006) An ancient evolutionary origin of the Rag1/2 gene locus. Proc Natl Acad Sci USA 103: 3728-3733CrossRefPubMedGoogle Scholar
  16. Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71: 101-132CrossRefPubMedGoogle Scholar
  17. Hiom K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463-470CrossRefPubMedGoogle Scholar
  18. Jackson PK, Eldridge AG, Freed E et al (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10: 429-439CrossRefPubMedGoogle Scholar
  19. Jiang H, Chang FC, Ross AE et al (2005) Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol Cell 18: 699-709CrossRefPubMedGoogle Scholar
  20. Jiang H, Ross AE, Desiderio S (2004) Cell cycle-dependent accumulation in vivo of transposition-competent complexes between recombination signal ends and full-length RAG proteins. J Biol Chem 279: 8478-8486CrossRefPubMedGoogle Scholar
  21. Jones JM, Gellert M (2001) Intermediates in V(D)J recombination: A stable RAG1/2 complex sequesters cleaved RSS ends. Proc Nat Acad Sci USA 98: 12926-12931CrossRefPubMedGoogle Scholar
  22. Jones JM, Gellert M (2003) Auto-ubiquitylation of the V(D)J recombinase protein RAG1. Proc Natl Acad Sci USA 100: 15446-15451CrossRefPubMedGoogle Scholar
  23. Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100: 6569-6574CrossRefPubMedGoogle Scholar
  24. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3: e181CrossRefPubMedGoogle Scholar
  25. Kosak ST, Skok JA, Medina KL et al (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296: 158-162CrossRefPubMedGoogle Scholar
  26. Kwon J, Imbalzano AN, Matthews A et al (1998) Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol Cell 2: 829-839CrossRefPubMedGoogle Scholar
  27. Kwon J, Morshead KB, Guyon JR et al (2000) Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol Cell 6: 1037-1048CrossRefPubMedGoogle Scholar
  28. Lee J, Desiderio S (1999) Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 11: 771-781CrossRefPubMedGoogle Scholar
  29. Leu TM, Schatz DG (1995) rag-1 and rag-2 are components of a high-molecular-weight complex, and association of rag-2 with this complex is rag-1 dependent. Mol Cell Biol 15: 5657-5670PubMedGoogle Scholar
  30. Lewis SM, Hesse JE, Mizuuchi K et al (1988) Novel strand exchanges in V(D)J recombination. Cell 55: 1099-1107CrossRefPubMedGoogle Scholar
  31. Liang HE, Hsu LY, Cado D et al (2002) The "dispensable" portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17: 639-651CrossRefPubMedGoogle Scholar
  32. Lin WC, Desiderio S (1994) Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc Natl Acad Sci USA 91: 2733-2737CrossRefPubMedGoogle Scholar
  33. Lin WC, Desiderio S (1995) V(D)J recombination and the cell cycle. Immunol Today 16: 279-289CrossRefPubMedGoogle Scholar
  34. Liu Y, Subrahmanyam R, Chakraborty T, Sen R et al (2007) A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27: 561-671CrossRefPubMedGoogle Scholar
  35. Martelli AM, Manzoli L, Cocco L (2004) Nuclear inositides: facts and perspectives. Pharmacol Ther 101: 47-44CrossRefPubMedGoogle Scholar
  36. Matthews AG, Kuo AJ, Ramon-Maiques S et al (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450: 1106-1110CrossRefPubMedGoogle Scholar
  37. McMahan CJ, Difilippantonio MJ, Rao N et al (1997) A basic motif in the N-terminal region of RAG1 enhances V(D)J recombination activity. Mol Cell Biol 17: 4544-4552PubMedGoogle Scholar
  38. Messier TL, O’Neill JP, Hou SM et al (2003) In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J 22: 1381-1388CrossRefPubMedGoogle Scholar
  39. Mizuta R, Mizuta M, Araki S et al (2002) RAG2 is down regulated by cytoplasmic sequestration and ubiquitin-dependent degradation. J Biol Chem 277: 41423-41427CrossRefPubMedGoogle Scholar
  40. Noordzij JG, de Bruin-Versteeg S, Verkaik NS et al (2002) The immunophenotypic and immunogenotypic B-cell differentiation arrest in bone marrow of RAG-deficient SCID patients corresponds to residual recombination activities of mutated RAG proteins. Blood 100: 2145-2152PubMedGoogle Scholar
  41. Noordzij JG, Verkaik NS, Hartwig NG et al (2000) N-terminal truncated RAG1 proteins can direct T-cell but not immunoglobulin gene rearrangements. Blood 96: 203-209PubMedGoogle Scholar
  42. Oettinger MA, Schatz DG, Gorka C et al (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 1517-1523CrossRefPubMedGoogle Scholar
  43. Patenge N, Elkin SK, Oettinger MA (2004) ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J Biol Chem 279: 35360-35367CrossRefPubMedGoogle Scholar
  44. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503-533CrossRefPubMedGoogle Scholar
  45. Pickart CM (2000) Ubiquitin in chains. Trends Biochem Sci 25: 544-548CrossRefPubMedGoogle Scholar
  46. Piirila H, Valiaho J, Vihinen M (2006) Immunodeficiency mutation databases (IDbases). Hum Mutat 27: 1200-1208CrossRefPubMedGoogle Scholar
  47. Ramon-Maiques S, Kuo AJ, Carney D et al (2007) The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci USA 104: 18993-18998CrossRefPubMedGoogle Scholar
  48. Ramsden CA, Gellert M (1995) Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev 9: 2409-2420CrossRefPubMedGoogle Scholar
  49. Raval P, Kriatchko AN, Kumar S et al (2008) Evidence for Ku70/Ku80 association with full-length RAG1. Nucleic Acids Res 36: 2060-2072CrossRefPubMedGoogle Scholar
  50. Rodgers KK, Bu Z, Fleming KG et al (1996) A zinc-binding domain involved in the dimerization of RAG1. J Mol Biol 260: 70-74CrossRefPubMedGoogle Scholar
  51. Roman CA, Cherry SR, Baltimore D (1997) Complementation of V(D)J recombination deficiency in RAG-1(-/-) B cells reveals a requirement for novel elements in the N-terminus of RAG-1. Immunity 7: 13-14CrossRefPubMedGoogle Scholar
  52. Roth DB, Menetski JP, Nakajima PB et al (1992) V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70: 983-991CrossRefPubMedGoogle Scholar
  53. Roth DB, Zhu C, Gellert M (1993) Characterization of broken DNA molecules associated with V(D)J recombination. Proc Nat Acad Sci U S A 90: 10788-10792CrossRefGoogle Scholar
  54. Sadofsky MJ, Hesse JE, Gellert M (1994) Definition of a core region of RAG-2 that is functional in V(D)J recombination. Nucleic Acids Res 22: 1805-1809CrossRefPubMedGoogle Scholar
  55. Sadofsky MJ, Hesse JE, McBlane JF et al (1993) Expression and V(D)J recombination activity of mutated RAG-1 proteins. Nucleic Acids Res 21: 5644-5650CrossRefPubMedGoogle Scholar
  56. Sakano H, Huppi K, Heinrich G et al (1979) Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280: 288-294CrossRefPubMedGoogle Scholar
  57. Santagata S, Gomez CA, Sobacchi C et al (2000) N-terminal RAG1 frameshift mutations in Omenn’s syndrome: Internal methionine usage leads to partial V(D)J recombination activity and reveals a fundamental role in vivo for the N-terminal domains. Proc Natl Acad Sci USA 97: 14572-14577CrossRefPubMedGoogle Scholar
  58. Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59: 1035-1048CrossRefPubMedGoogle Scholar
  59. Schatz DG, Spanopoulou E (2005) Biochemistry of V(D)J recombination. Curr Top Microbiol Immunol 290: 49-55CrossRefPubMedGoogle Scholar
  60. Schuetz C, Huck K, Gudowius S et al (2008) An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 358: 2030-2038CrossRefPubMedGoogle Scholar
  61. Sekiguchi JA, Whitlow S, Alt FW (2001) Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol Cell 8: 1383-1390CrossRefPubMedGoogle Scholar
  62. Silver DP, Spanopoulou E, Mulligan RC et al (1993) Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V(D)J recombination. Proc Natl Acad Sci USA 90: 6100-6104CrossRefPubMedGoogle Scholar
  63. Simkus C, Anand P, Bhattacharyya A et al (2007) Biochemical and folding defects in a RAG1 variant associated with Omenn syndrome. J Immunol 179: 8332-8340PubMedGoogle Scholar
  64. Simkus C, Mayika M, Jones JM (2008) Karyopherin alpha 1 is a putative substrate of the RAG1 ubiquitin ligase. Mol Immunol. Doi:10.1016/j.molimm.2008.11.009
  65. Sobacchi C, Marrella V, Rucci F et al (2006) RAG-dependent primary immunodeficiencies. Hum Mutat 27: 1174-1184CrossRefPubMedGoogle Scholar
  66. Spanopoulou E, Cortes P, Shih C et al (1995) Localization, interaction, and RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity 3: 715-726CrossRefPubMedGoogle Scholar
  67. Steen SB, Han JO, Mundy C et al (1999) Roles of the "dispensable" portions of RAG-1 and RAG-2 in V(D)J recombination. Mol Cell Biol 19: 3010-3017PubMedGoogle Scholar
  68. Swanson PC, Volkmer D, Wang L (2004) Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition, but not hybrid joint formation or disintegration. J Biol Chem 279: 4034-4044CrossRefPubMedGoogle Scholar
  69. Taccioli GE, Rathbun GA, Oltz EM et al (1993) Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207-210CrossRefPubMedGoogle Scholar
  70. Talukder SR, Dudley DD, Alt FW et al (2004) Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice. Nucleic Acids Res 32: 4539-4549CrossRefPubMedGoogle Scholar
  71. Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3: 531-539CrossRefPubMedGoogle Scholar
  72. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575-581CrossRefPubMedGoogle Scholar
  73. Tsai CL, Schatz DG (2003) Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J 22: 1922-1930CrossRefPubMedGoogle Scholar
  74. van Gent DC, McBlane JF, Ramsden DA et al (1996) Initiation of V(D)J recombinations in a cell-free system by RAG1 and RAG2 proteins. Curr Top Microbiol Immunol 217: 1-20PubMedGoogle Scholar
  75. van Gent DC, Ramsden DA, Gellert M (1996) The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85: 107-113CrossRefPubMedGoogle Scholar
  76. Villa A, Sobacchi C, Notarangelo LD et al (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97: 81-88CrossRefPubMedGoogle Scholar
  77. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169-178CrossRefPubMedGoogle Scholar
  78. West KL, Singha NC, De Ioannes P et al (2005) A direct interaction between the RAG2 C terminus and the core histones is required for efficient V(D)J recombination. Immunity 23: 203-212CrossRefPubMedGoogle Scholar
  79. Willett CE, Cherry JJ, Steiner LA (1997) Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics 45: 394-404CrossRefPubMedGoogle Scholar
  80. Wilson DR, Norton DD, Fugmann SD (2008) The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails. Dev Comp Immunol 32: 1221-1230CrossRefPubMedGoogle Scholar
  81. Yancopoulos GD, Alt FW (1986) Regulation of the assembly and expression of variable-region genes. Annu Rev Immunol 4: 339-368CrossRefPubMedGoogle Scholar
  82. Yurchenko V, Xue Z, Sadofsky M (2003) The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev 17: 581-585CrossRefPubMedGoogle Scholar
  83. Zheng N, Wang P, Jeffrey PD et al (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102: 533-539CrossRefPubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular and Cellular SciencesGeorgetown University Medical CenterWashingtonUSA
  2. 2.Department of Biochemistry and Molecular and Cellular SciencesGeorgetownUniversity Medical CenterWashingtonUSA

Personalised recommendations