Advertisement

Higher-Order Ruled Surfaces and their Possible Use in Architectural Design

  • Vladan NikolićEmail author
  • Olivera Nikolić
  • Jasmina Tamburić
  • Sanja Spasić Đorđević
  • Sanja Janković
Research
  • 11 Downloads

Abstract

This paper analyzes higher-order ruled surfaces in terms of their application in architecture and design. The possibilities of applying their characteristic segments and cuttings in the design of architectural objects, as well as the possibilities of their being multiplied and combined into more complex spatial structures are considered. The suggested design solutions should in practice enable the implementation of higher-order surfaces into the geometric forms of future architectural structures, as well as their use in different areas of design. The criteria for the selection of higher-order ruled surfaces are defined in this paper while their successful research, analysis and practical application are studied.

Keywords

Architecture Design Higher-order ruled surfaces Application 

Notes

Acknowledgements

The authors express their gratitude to the Ministry of Science and Technological Development of Serbia for providing partial support for this project (Grant No. 36037).

References

  1. Dovniković, Lazar. 1974. Ravne krive 4. reda kao projekcije prostornih krivih 4. reda 1. vrste, magistarski rad, Novi Sad.Google Scholar
  2. Dovniković, Lazar. 1977. Nacrtno-geometrijska obrada i klasifikacija ravnih krivih 3. reda, izvod iz doktorske disertacije, Matica srpska, Novi Sad.Google Scholar
  3. Dovniković, Lazar. 1986. Zapisi iz teorije krivih i površi, skripta, Beograd.Google Scholar
  4. Drăgan, Delia, Bărbînță, Dorin, Pondichi-Alb, Claudia. 2017. Study on the Representation in Projection with Elevations of Conoid-Type Surfaces, Advanced Engineering Forum, 21: 418–425.Google Scholar
  5. Flöry, Simon and Pottmann, Helmut. 2010. Ruled Surfaces for Rationalization and Design in Architecture. In: ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture, 103–109.Google Scholar
  6. Garcia, Mark. Ed. 2009. Patterns of Architecture, Architectural Design, 79(6): 6–17.Google Scholar
  7. Gherardini, Francesco and Leali, Francesco. 2016. A Framework for 3D Pattern Analysis and Reconstruction of Persian Architectural Elements, Nexus Network Journal, 18(1): 133–167.Google Scholar
  8. Gherardini, Francesco and Leali, Francesco. 2017. Reciprocal Frames in Temporary Structures: An Aesthetical and Parametric Investigation, Nexus Network Journal, 19(3): 741–762.Google Scholar
  9. Gorjanc, Sonja. 1997. Izvođenje pet tipova pravičastih ploha 4. stupnja, KoG (Croatian Society for Geometry and Graphics) 2: 57–67.Google Scholar
  10. Hamlin, J. F., Séquin, C. H. 2009. Ribbed Surfaces for Art Architecture and Visualization, Computer-Aided Design & Applications, 6(6): 749–758.Google Scholar
  11. Iwamoto, Lisa. 2013. Digital fabrications: architectural and material techniques. New York: Princeton Architectural Press.Google Scholar
  12. Kolarević, Branko. 2004. Architecture in the digital age: design and manufacturing. London: Taylor and Francis.Google Scholar
  13. Krivoshapko, S. N., and V. N. Ivanov, 2015. Encyclopedia of analytical surfaces. Cham: Springer.Google Scholar
  14. Malek, Samar and Chris J. K. Williams, 2017. Reflections on the Structure, Mathematics and Aesthetics of Shell Structures, Nexus Network Journal, 19(3): 555–563.Google Scholar
  15. Marković, Biserka and Sonja Krasić, 2000. Kriterijumi za konstruktivno određivanje realnih dvostrukih tačaka bicirkularnih krivih 4. reda, In: Zbornik radova Mongeometrija 2000 (Mongeometrija 2000, Niš, September 2000): 161–170.Google Scholar
  16. Marković, Biserka. 1987. Izvođenje pravoizvodnih tvorevina primenom polariteta u premenovima i nizovima kvadrika, doktorska disertacija, Arhitektonski fakultet Univerziteta u Beogradu.Google Scholar
  17. Marković, Miroslav. 1995. Pravoizvodne površi 3. stepena kao proizvod para površi 2. stepena, Zbornik radova Gradjevinskog fakulteta u Nišu 15-16: 199–207.Google Scholar
  18. Nikolić, Olivera, Vladan Nikolić, Petar Pejić. 2012. The triangular forms of the modern architecture buildings facades. In: Proceeding of 3rd International Conference on Geometry and Graphics, MoNGeometrija 2012: 637–648.Google Scholar
  19. Nikolić, Vladan, Ljiljana Radović, Biserka Marković. 2015. Symmetry of “Twins”. Symmetry, 7: 164–181.Google Scholar
  20. Nikolić, Vladan. 2015. Constructive Treatment of Geometric Surfaces and Their Applications in Architecture, doctoral dissertation, Faculty of Civil Engineering and Architecture in Niš.Google Scholar
  21. Odehnal, Boris. 2013. Conchoids on the Sphere, KoG (Croatian Society for Geometry and Graphics) 17: 43–52.Google Scholar
  22. Pottmann, Helmut, Andreas Asperl, Michael Hofer, Axel Kilian. 2007. Architectural geometry, LOCATION: Bentley Institute Press.Google Scholar
  23. Savelov, A. A. 1979. Ravanske krivulje, Školska knjiga, Zagreb: PUBLISHER.Google Scholar
  24. Steadman, Philip. 2015. Architectural Doughnuts: Circular-Plan Buildings, with and without Courtyards, Nexus Network Journal, 17 (3): 759–783.Google Scholar
  25. Adriaenssens, Sigrid, Philippe Block, Diederik Veenendaal, Chris Williams. 2014. Shell Structures for Architecture: Form Finding and Optimization, New York: Routledge.Google Scholar

Copyright information

© Kim Williams Books, Turin 2019

Authors and Affiliations

  • Vladan Nikolić
    • 1
    Email author
  • Olivera Nikolić
    • 1
  • Jasmina Tamburić
    • 1
  • Sanja Spasić Đorđević
    • 1
  • Sanja Janković
    • 1
  1. 1.Faculty of Civil Engineering and Architecture in NišNišSerbia

Personalised recommendations