Advertisement

A Focal Curve Approximation of a Borromini Oval Contour

  • Maja PetrovićEmail author
  • Branko Malešević
  • Radovan Štulić
  • Marko Vučić
  • Đorđe Petrović
  • Radomir Mijailović
Research
  • 32 Downloads

Abstract

In this paper we derive a mathematical procedure for the determination of a Weberian focal curve (of two, three or four collinear foci), as a good fitting curve for the impost of the Dome of San Carlo alle Quatro Fontane by Francesco Borromini. For this research, the usual oval composition of two or more circles, which is a piecewise function having the property of C1 continuity, is substituted with a Weberian differentiable focal curve. The created procedure iteratively determines the position of foci giving the highest possible value of the coefficient of determination for the particular case study.

Keywords

San Carlo alle Quattro Fontane Weberian focal curve Contour fit 

Notes

Acknowledgements

This research was supported by the Serbian Ministry of Education and Science (Projects no. TR 36042, ON 174032, III 44006, TR 36010 and TR 36022).

References

  1. Dall’Orto, Giovanni. 2005. Foto di Giovanni Dall’Orto: Cupola di san Carlo alle quattro fontane, del Borromini (Roma). https://commons.wikimedia.org/wiki/San_Carlo_alle_Quattro_Fontane#/media/File:Cupola_di_san_Carlo_alle_quattro_fontane,_del_Borromini_(Roma)._Foto_Giovanni_Dall%27Orto.JPG (accessed 5 May 2018).
  2. Duvernoy, Sylvie. 2015. Baroque Oval Churches: Innovative Geometrical Patterns in Early Modern Sacred Architecture. Nexus Network Journal 17 (2): 425–456.CrossRefzbMATHGoogle Scholar
  3. Gallier, Jean. 2001. Geometric Methods and Applications: For Computer Science and Engineering. New York: Springer.CrossRefzbMATHGoogle Scholar
  4. González, Genaro, Albert Samper and Blas Herrera. 2018. Classification by Type of the Arches in Gaudı´s Palau Guell. Nexus Network Journal 20 (1): 173–186.CrossRefzbMATHGoogle Scholar
  5. Huylebrouck, Dirk. 2007. Curve Fitting in Architecture. Nexus Network Journal 9 (1): 59–70.CrossRefGoogle Scholar
  6. Hatch, John G. 2015. The Science Behind Francesco Borromini’s Divine Geometry. In: Architecture and Mathematics from Antiquity to the Future, eds. Kim Williams and Michael J. Oswald, vol. II, ch. 61, 217–228. Basel: Birkhäuser.Google Scholar
  7. Hill, Michael. 2013. Practical and Symbolic Geometry in Borromini’s San Carlo alle Quattro Fontane. Journal of the Society of Architectural Historians 72 (4): 555–583.CrossRefGoogle Scholar
  8. Herrera, Blas and Albert Samper. 2015. Definition and Calculation of an Eight-Centered Oval which is Quasi-Equivalent to the Ellipse. Journal for Geometry and Graphics. 19 (2): 257–268.MathSciNetzbMATHGoogle Scholar
  9. Huerta, Santiago. 2007. Oval Domes: History, Geometry and Mechanics. Nexus Network Journal 9 (2): 211–248.CrossRefzbMATHGoogle Scholar
  10. Lluis i Ginovart, Josep, Josep M. Toldrà Domingo, Gerard Fortuny Anguera, Augusti Costa Jover and Pau de Sola-Morales Serra. 2014. The Ellipse and the Oval in the Design of Spanish Military Defence in the Eighteenth Century. Nexus Network Journal 16 (3): 587–612.Google Scholar
  11. Mazzotti, Angelo Alessandro. 2014. What Borromini Might Have Known About Ovals. Ruler and Compass Constructions. Nexus Network Journal 16 (2): 389–415.Google Scholar
  12. Mazzotti Angelo Alessandro. 2017. All Sides to an Oval. Properties, Parameters, and Borromini’s Mysterious Construction. Cham: Springer.Google Scholar
  13. Mazzotti, Angelo Alessandro and Margherita Caputo. 2017. Borromini’s Ovals in the Dome of San Carlo alle Quattro Fontane in Rome. In All Sides to an Oval. By Angelo Alessandro Mazzotti. 117–144. Cham: Springer.Google Scholar
  14. Petrović, Maja, Bojan Banjac, Branko Malešević and Radomir Mijailović. 2016. Curve fitting by multifocal ellipses in architectural structures geometry. In: Proceedings of 5th International Scientific Conference on Geometry and GraphicsmoNGeometrija 2016, Belgrade, Serbia, 160–164.Google Scholar
  15. Petrović, Maja, Radomir Mijailović, Branko Malešević, Đorđe Đorđević and Radovan Štulić. 2018. The use of Weber’s focal-directorial plane curves as approximation of top views contour curves at architectural objects. Facta Universitatis, Series: Architecture and Civil Engineering 16 (2): 237–246. http://casopisi.junis.ni.ac.rs/index.php/FUArchCivEng/article/view/3438
  16. Petrović, Maja. 2016. Generating the focal-directorial geometric forms as a designing pattern of the architectural-urban space (in Serbian: Generisanje fokalno-direktrisnih geometrijskih formi kao obrasca za oblikovanje arhitektonsko-urbanističkog prostora). Ph.D. thesis, University of Belgrade, Faculty of Architecture.Google Scholar
  17. Petrović, Maja, Marija Obradović and Radomir Mijailović. 2011. Suitability analysis of Hügelschäffer’s egg curve application in architectural structures’ geometry. In: Proceedings of ICEGD Conference, Iasi Romania, Buletinul Institutului Politehnic din Iasi, Publicat de Universitatea Tehnica “Gheorghe Asachi“din Iasi, Tomul LVII (LXI), Fasc. 3, pp. 115–122.Google Scholar
  18. Samper, Albert, Genaro González and Blas Herrera. 2017. Determination of the geometric shape which best fits an architectural arch within each of the conical curve types and hyperbolic-cosine curve types: The case of Palau Güell by Antoni Gaudí. Journal of Cultural Heritage 25: 56–64.CrossRefGoogle Scholar
  19. Serlio, Sebastiano. 1617. The first Book of Architecture, https://bit.ly/2K3NxaO, (accessed 22 April 2018).

Copyright information

© Kim Williams Books, Turin 2018

Authors and Affiliations

  1. 1.The Faculty of Transport and Traffic EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations