Journal of Consumer Protection and Food Safety

, Volume 13, Issue 3, pp 271–278 | Cite as

Molecular biological species identification of animal samples from Asian buffets

  • Gesche Spielmann
  • Lars Gerdes
  • Andreas Miller
  • Katharina Verhaelen
  • Claus Schlicht
  • Barbara Schalch
  • Gerhard Haszprunar
  • Ulrich Busch
  • Ingrid HuberEmail author
Research Article


In 2015, the Bavarian Health and Food Safety Authority (Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit) initiated controls of Asian buffets to verify declaration of animal species. Especially Mongolian buffets, where raw meat of partly exotic animal species is offered with side dishes and sauces, enjoy high popularity in Germany. A total of 27 samples were collected in 5 Bavarian cities including nine mammalian meat, 1 frog, 3 crocodile, 10 fish, 1 squid, 2 shrimp, and 1 mussel sample. All samples were analyzed using molecular biological methods. The animal species was identified by DNA sequencing of the mitochondrial genes cytochrome c oxidase subunit I, cytochrome b or 16S ribosomal DNA with subsequent database mining. From the 27 samples, 5 were objectionable with either wrong or incomplete labelling. These included two fish samples, two samples falsely declared as zebra which were in fact beef, one guanaco sample which was depicted as camel and another guanaco sample which was marketed as llama. The results clearly show the need for continued surveillance of meat species in buffets covering a wide variety of meats and seafood.


Animal species identification Asian buffets DNA sequencing Cytochrome c oxidase subunit I Cytochrome b 16S ribosomal DNA 



We thank Miriam Schrempp, Marzena Maggipinto, Ulrike Hohenberger and Angelika Wahl for their excellent laboratory work. We also thank Dr. Azuka Iwobi for critically reading our manuscript. Furthermore, we would like to acknowledge the financial support of the Bavarian State Ministry of the Environment and Consumer Protection.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Alvarado Bremer JR, Ditty JG, Turner JS, Saxton BL (2010) Molecular species identification of commercially important penaeid shrimp from the Gulf of Mexico using a multiplex haplotype-specific PCR assay. Biochem Syst Ecol 38(4):715–721CrossRefGoogle Scholar
  2. Ayaz Y, Ayaz ND, Erol I (2006) Detection of species in meat and meat products using enzyme-linked immunosorbent assay. J Muscle Foods 17(2):214–220CrossRefGoogle Scholar
  3. Bénard-Capelle J, Guillonneau V, Nouvian C, Fournier N, Le Loët K, Dettai A (2015) Fish mislabelling in France: substitution rates and retail types. PeerJ 2:e714CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bitanyi S, Bjornstad G, Ernest EM, Nesje M, Kusiluka LJ, Keyyu JD, Mdegela RH, Roed KH (2011) Species identification of Tanzanian antelopes using DNA barcoding. Mol Ecol Resour 11(3):442–449CrossRefPubMedGoogle Scholar
  5. Brodmann PD, Nicholas G, Schaltenbrand P, Ilg EC (2001) Identifying unknown game species: experience with nucleotide sequencing of the mitochondrial cytochrome b gene and a subsequent basic local alignment search tool search. Eur Food Res Technol 212(4):491–496CrossRefGoogle Scholar
  6. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76(4):1967–1971CrossRefPubMedGoogle Scholar
  7. BVL (2014) Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB, § 35 Vorl. Tabakgesetz, § 28 b Gentechnikgesetz. Beuth Verlag GmbH, BerlinGoogle Scholar
  8. Cai Y, Zhang L, Shen F, Zhang W, Hou R, Yue B, Li J, Zhang Z (2011) DNA barcoding of 18 species of Bovidae. Chin Sci Bull 56(2):164–168CrossRefGoogle Scholar
  9. D’Amato ME, Alechine E, Cloete KW, Davison S, Corach D (2013) Where is the game? Wild meat products authentication in South Africa: a case study. Investig Genet 4:6CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fajardo V, Gonzalez I, Martin I, Rojas MA, Hernandez PE, Garci AT, Martin R (2008) Differentiation of European wild boar (Sus scrofa scrofa) and domestic swine (Sus scrofa domestica) meats by PCR analysis targeting the mitochondrial D-loop and the nuclear melanocortin receptor 1 (MC1R) genes. Meat Sci 78(3):314–322CrossRefPubMedGoogle Scholar
  11. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299PubMedGoogle Scholar
  12. Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, Martellos S, Labra M (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50(1):55–63CrossRefGoogle Scholar
  13. Günther B, Raupach MJ, Knebelsberger T (2017) Full-length and mini-length DNA barcoding for the identification of seafood commercially traded in Germany. Food Control 73(Part B):922–929CrossRefGoogle Scholar
  14. Haye PA, Segovia NI, Vera R, MdlÁ Gallardo, Gallardo-Escárate C (2012) Authentication of commercialized crab-meat in Chile using DNA Barcoding. Food Control 25(1):239–244CrossRefGoogle Scholar
  15. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of Birds through DNA Barcodes. PLoS Biol 2(10):312CrossRefGoogle Scholar
  17. Heintzman PD, Zazula GD, Cahill JA, Reyes AV, MacPhee RD, Shapiro B (2015) Genomic data from extinct North American Camelops revise camel evolutionary history. Mol Biol Evol 32(9):2433–2440CrossRefPubMedGoogle Scholar
  18. Hsieh YHP, Woodward BB, Ho SH (1995) Detection of species substitution in raw and cooked meats using immunoassays. J Food Prot 58(5):555–559CrossRefGoogle Scholar
  19. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3(6):18CrossRefGoogle Scholar
  20. ISO (21571:2005). International Standard (ISO) 21571:2005 Foodstuffs — methods of analysis for the detection of genetically modified organisms and derived products — nucleic acid extractionGoogle Scholar
  21. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7(4):544–548CrossRefGoogle Scholar
  22. Jacquet JL, Pauly D (2008) Trade secrets: Renaming and mislabeling of seafood. Mar Policy 32(3):309–318CrossRefGoogle Scholar
  23. Kappel K, Schröder U (2015) Species identification of fishery products in Germany. J Verbrauch Lebensm 10(1):31–34CrossRefGoogle Scholar
  24. Kappel K, Schröder U (2016) Substitution of high-priced fish with low-priced species: adulteration of common sole in German restaurants. Food Control 59:478–486CrossRefGoogle Scholar
  25. Karaiskou N, Apostolidis AP, Triantafyllidis A, Kouvatsi A, Triantaphyllidis C (2003) Genetic identification and phylogeny of three species of the genus Trachurus based on mitochondrial DNA analysis. Mar Biotechnol (NY) 5(5):493–504CrossRefGoogle Scholar
  26. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86(16):6196–6200CrossRefPubMedGoogle Scholar
  27. Kyrova V, Surmanova P, Ostry V, Rehurkova I, Ruprich J, Jechova M (2016) Sea fish fraud? A confirmation of Gadoid species food labelling. Br Food J 119(1):122–130CrossRefGoogle Scholar
  28. Layton KKS, Martel AL, Hebert PDN (2014) Patterns of DNA barcode variation in canadian marine molluscs. PLoS One 9(4):e95003CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ling KH, Nichols PD, But PP (2009) Fish-induced keriorrhea. Adv Food Nutr Res 57:1–52CrossRefPubMedGoogle Scholar
  30. Lowenstein JH, Amato G, Kolokotronis SO (2009) The real maccoyii: identifying tuna sushi with DNA barcodes — contrasting characteristic attributes and genetic distances. PloS One 4(11):7866CrossRefGoogle Scholar
  31. Luo A, Zhang A, Ho SYW, Xu W, Zhang Y, Shi W, Cameron SL, Zhu C (2011) Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genom 12:84CrossRefGoogle Scholar
  32. Mariani S, Griffiths AM, Velasco A, Kappel K, Jérôme M, Perez-Martin RI, Schröder U, Verrez-Bagnis V, Silva H, Vandamme SG, Boufana B, Mendes R, Shorten M, Smith C, Hankard E, Hook SA, Weymer AS, Gunning D, Sotelo CG (2015) Low mislabeling rates indicate marked improvements in European seafood market operations. Front Ecol Environ 13(10):536–540CrossRefGoogle Scholar
  33. Mikkelsen PM, Bieler R, Kappner I, Rawlings TA (2006) Phylogeny of Veneroidea (Mollusca: Bivalvia) based on morphology and molecules. Zool J Linn Soc 148(3):439–521CrossRefGoogle Scholar
  34. Muñoz-Colmenero M, Blanco O, Arias V, Martinez JL, Garcia-Vazquez E (2016) DNA authentication of fish products reveals mislabeling associated with seafood processing. Fisheries 41(3):128–138CrossRefGoogle Scholar
  35. Nicolè S, Negrisolo E, Eccher G, Mantovani R, Patarnello T, Erickson DL, Kress WJ, Barcaccia G (2012) DNA barcoding as a reliable method for the authentication of commercial seafood products. Food Technol Biotechnol 50:387–398Google Scholar
  36. Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR, version 2.0, privately published document compiled by S. Palumbi. Dept. Zoology, Univ, HonoluluGoogle Scholar
  37. Pappalardo AM, Ferrito V (2015) DNA barcoding species identification unveils mislabeling of processed flatfish products in southern Italy markets. Fish Res 164:153–158CrossRefGoogle Scholar
  38. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. Off J Eur Union L139:55 (30.04.2004)Google Scholar
  39. Rimbach G, Möhring J, Ebersdobler HF (2010) Lebensmittel-Warenkunde für Einsteiger. Springer, BerlinCrossRefGoogle Scholar
  40. Schäffer S, Zachos FE, Koblmüller S (2017) Opening the treasure chest: a DNA-barcoding primer set for most higher taxa of Central European birds and mammals from museum collections. PLoS One 12(3):e0174449CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shears P (2010) Food fraud — a current issue but an old problem. Br Food J 112(2):198–213CrossRefGoogle Scholar
  42. Sicherer SH, Sampson HA (2013) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133(2):291–307CrossRefPubMedGoogle Scholar
  43. Skidmore JA, Billah M, Binns M, Short RV, Allen WR (1999) Hybridizing old and new world camelids: Camelus dromedarius x Lama guanicoe. Proc Biol Sci 266(1420):649–656CrossRefPubMedPubMedCentralGoogle Scholar
  44. Spink J, Moyer DC (2011) Defining the public health threat of food fraud. J Food Sci 76(9):R157–R163CrossRefPubMedGoogle Scholar
  45. Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T, Prins TW, Kok E (2016) Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem 408:4615–4630CrossRefPubMedPubMedCentralGoogle Scholar
  46. Staffen CF, Staffen MD, Becker ML, Löfgren SE, Muniz YCN, de Freitas RHA, Marrero AR (2017) DNA barcoding reveals the mislabeling of fish in a popular tourist destination in Brazil. PeerJ 5:e4006CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stern DB, Castro Nallar E, Rathod J, Crandall KA (2017) DNA Barcoding analysis of seafood accuracy in Washington, D.C. restaurants. PeerJ 5:3234CrossRefGoogle Scholar
  48. Teletchea F, Maudet C, Hanni C (2005) Food and forensic molecular identification: update and challenges. Trends Biotechnol 23(7):359–366CrossRefPubMedGoogle Scholar
  49. Tong JG, Chan TY, Chu KH (2000) A preliminary phylogenetic analysis of metapenaeopsis (Decapoda: Penaeidae) based on mitochondrial DNA sequences of selected species from the Indo-West Pacific. J Crustacean Biol 20(3):541–549CrossRefGoogle Scholar
  50. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci 23(2):161–171CrossRefPubMedGoogle Scholar
  51. Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  52. Waiblinger HU, Bartsch D, Brockmeyer J, Bruenen-Nieweler C, Busch U, Haase I, Hahn A, Haarmann M, Hauser W, Huber I, Jany KD, Kirmse N, Lindeke S, Neumann K, Naumann H, Paschke A, Pietsch K, Pöpping B, Reiting R, Schroeder U, Schwägele F, Weller MG, Zagon J (2017) Methods of differentiating animal species in foods — status quo. Fleischwirtschaft Int 97(1):50–55Google Scholar
  53. Ward R, Zemlak T, Innes B, Last P, Hebert P (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41(8):828–837CrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2018

Authors and Affiliations

  • Gesche Spielmann
    • 1
  • Lars Gerdes
    • 1
  • Andreas Miller
    • 1
  • Katharina Verhaelen
    • 1
  • Claus Schlicht
    • 1
  • Barbara Schalch
    • 1
  • Gerhard Haszprunar
    • 2
  • Ulrich Busch
    • 1
  • Ingrid Huber
    • 1
    Email author
  1. 1.Bavarian Health and Food Safety AuthorityOberschleißheimGermany
  2. 2.SNSB-Bavarian State Collection of ZoologyMunichGermany

Personalised recommendations