Quality parameters for the evaluation of cold-pressed edible argan oil

  • Bertrand MatthäusEmail author
  • Ludger Brühl
Research Article


Seventeen argan oils from Swiss and German markets were evaluated regarding the sensory quality, identity, oxidative state as well as contaminants in order to give an overview about the characteristics of this high-value product on the market. At least one sensory defect was detected in each argan oil by a trained sensory panel showing that the sensory quality in most oils should be improved. Adulterations of expensive argan oil with cheaper oils are detectable by the dominant occurrence of γ-tocopherol and α-spinasterol and 7-stigmastenol (Schottenol) as characteristic Tocopherol and Phytosterols, respectively. Only one oil exceeded the limit of the total oxidation value (TOTOX) of 20; the shelf-life calculated from the induction period (Rancimat method at 120 °C) was 196–435 days. Some oils contained higher amounts of mineral oils while the content of Benzo[a]pyrene in all oils was remarkably below the limit of 2 µg/kg.


Argan oil Contaminants Oxidative state Quality parameters Sensory quality Identity 


  1. Alimentarius C (2001) Codex Standard for Named Vegetable Oils CODEX STAN 210 (Amended 2003, 2005). Online:
  2. Anon (2009) Commission Regulation (EC) No 1151/2009 of November 27th 2009 imposing special conditions governing the import of sunflower oil originating in or consigned from Ukraine due to contamination risks by mineral oil and repealing Decision 2008/433/EC Off J Europ Union L 313/336–L 313/339Google Scholar
  3. Anon (2011) Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs Off J Europ Union L 215/214–L 215/218Google Scholar
  4. Charrouf Z, Guillaume D, Driouich A (2002) The Argan tree, an asset for Morocco. Biofutur 220:54–57Google Scholar
  5. Charrouf Z, El Hamchi H, Mallia S, Licitra G, Guillaume D (2006) Influence of roasting and seed collection on argan oil odorant composition. Natural Product Commun 1(5):399–403Google Scholar
  6. Charrouf Z, Harhar H, Gharby S, Guillaume D (2008) Enhancing the value of argan oil is the best mean to sustain the argan grove economy and biodiversity, so far. OCL Ol Corps Gras Lipides 15(4):269–274CrossRefGoogle Scholar
  7. DGF (2013) Deutsche Gesellschaft für Fettwissenschaft e. V.—Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten, Tensiden und verwandten Stoffen (2.Aufl.) Stuttgart: Wissenschaftliche VerlagsgesellschaftGoogle Scholar
  8. Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109(7):710–732CrossRefGoogle Scholar
  9. EFSA (2008) Polycyclic aromatic hydrocarbons in food. Scientific opinion of the panel on contaminants in the food chain (Question N° EFSA-Q-2007-136) Adpt June 9th 2008Google Scholar
  10. Frankel EN (2005) Methods to determine extent of oxidation. In: Frankel EN (ed) Lipid oxidation. The Oily Press, Dundee, pp 99–128Google Scholar
  11. Geeraert E, Sandra P (1985) Capillary GC of triglycerides in fats and oils using a high temperature phenylmethylsilicone stationary phase, Part I. HRC CC. J High Resolut Chromatogr Commun 8:415–422CrossRefGoogle Scholar
  12. Hilali M, Charrouf Z, Aziz Soulhi AE, Hachimi L, Guillaume D (2005) Influence of origin and extraction method on argan oil physico-chemical characteristics and composition. J Agric Food Chem 53:2081–2087CrossRefPubMedGoogle Scholar
  13. ISO (2007) International Organization of Standardization. ISO 15302-2007—Animal and vegetable fats and oils—Determination of benzo[a]pyrene—Reverse-phase high performance liquid chromatographic method Geneva, SwitzerlandGoogle Scholar
  14. Lebensmittelbuch (2011) Leitsätze für Speisefette und -öle. vom 3. November 2011 (BAnz. Nr.181 vom 1.12.2011, pp 4246)Google Scholar
  15. Matthäus B, Guillaume D, Gharby S, Haddad A, Harhar H, Charrouf Z (2010) Effect of processing on the quality of edible argan oil. Food Chem 120:426–432CrossRefGoogle Scholar
  16. Maurin R, Fellatzarrouck K, Ksir M (1992) Positional analysis and determination of triacylglycerol structure of argania-spinosa seed oil. J Am Oil Chem Soc 69(2):141–145CrossRefGoogle Scholar
  17. Moret S, Barp L, Grob K, Conte LS (2011) Optimised off-line SPE-GC-FID method for the determination of mineral oil saturated hydrocarbons (MOSH) in vegetable oils. Food Chem 129(4):1898–1903CrossRefGoogle Scholar
  18. Ourrach I, Rada M, Perez-Camino MC, Benaissa M, Guinda A (2012) Detection of argan oil adulterated with vegetable oils: new markers. Grasas Aceites 63(4):355–364CrossRefGoogle Scholar
  19. Oussama A, Elabadi F, Devos O (2012) Analysis of argan oil adulteration using infrared spectroscopy. Spectrosc Lett 45(6):458–463CrossRefGoogle Scholar
  20. Pardun H (1976) Analyse der Nahrungsfette. P. Parey Verlag, Berlin, HamburgGoogle Scholar
  21. Rossell JB (1989) Measurement of rancidity (2 Aufl) London. Elsevier Applied Science, New YorkGoogle Scholar
  22. Rutkowski A, Krygier K, Darzynkiewicz R (1977) Studies on analytics of frying fats. Lebensmittel Industrie 24(8):370–373Google Scholar
  23. Tsaknis J, Spiliotis V, Lalas S, Gergis V, Dourtoglou V (1999) Quality changes of Moringa oleifera, variety Mbololo of Kenya, seed oil during frying. Grasas Aceites 50:37–48CrossRefGoogle Scholar
  24. Zeddelmann HV, Wurziger J (1973) Verhalten und Beurteilung von Fritierfetten in der Praxis. Fette Seifen Anstrichmittel 75:18–24CrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2014

Authors and Affiliations

  1. 1.Department of Safety and Quality of CerealsMax Rubner-Institut, Federal Research Institute for Nutrition and Food, Working group Lipid ResearchDetmoldGermany

Personalised recommendations