Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: a review

Review article

Abstract

In the future there will be a very strong competition between arable land use for phytogenic biomass production for feed/food, fuel, fibre and other industrial materials, as well as for settlements and natural conservation areas because of the growing population and limited natural resources. Therefore plants with high and stable yields, and requiring low external inputs (low input varieties) should be the main aim of plant breeding. In addition to traditional breeding, plant biotechnology seems to have the potential to contribute to this objective. Nutritional and safety studies with feed/food made from such modified plants are one of the most important prerequisite for public acceptance, and to improve knowledge in the feed/food sciences. The first step for the nutritional and safety assessment of such modified plants is the compositional analysis of potential feed/food, including the newly expressed proteins and other new constituents, and its comparison with conventional counterparts. In vitro studies and experiments with laboratory animals comprise the next steps of the assessment. About 70–90 % of the harvested biomass from genetically modified plants (GMPs) is consumed by food producing animals. Therefore, feeding studies with target animals are of special concern for nutritional assessment, and these are considered in more detail in the present paper. Up to now most studies have been done with GMPs of the 1st generation (plants with input traits, but without substantial changes in composition). Other experimental designs for nutritional and safety assessments are recommended for GMPs with output traits or with substantial changes in composition (plants of the 2nd generation).

Keywords

Genetically modified plants (GMP) Nutritional and safety assessment Composition Types of feeding studies 

Zusammenfassung

Zukünftig ist infolge weiter ansteigender Erdbevölkerung und knapper werdender natürlicher Ressourcen ein noch intensiverer Wettbewerb um landwirtschaftliche Nutzfläche bzw. pflanzliche Biomasse für die Erzeugung von Lebens- und Futtermitteln, Energie, industriellen Rohstoffen als auch um Flächen für Siedlungen und Naturschutz zu erwarten. Deshalb sollte die Entwicklung von Pflanzen mit hohen und stabilen Erträgen bei geringem Ressourceneinsatz (low input varieties) das Hauptziel der Pflanzenzüchtung sein. Neben der traditionellen Pflanzenzüchtung scheint die Pflanzenbiotechnologie ein beachtliches Potenzial zur Realisierung dieser Zielstellung zu haben. Entsprechende Studien zur Bewertung des ernährungsphysiologischen Wertes und der Sicherheit sind eine wesentliche Voraussetzung für die öffentliche Akzeptanz der aus diesen Pflanzen hergestellten Futter- und Lebensmittel. Derartige Studien leisten auch bedeutsame Beiträge zur Verbesserung der Kenntnisse auf dem Gebiet der Futter und Lebensmittelkunde. Der erste Schritt zur ernährungsphysiologischen und Sicherheitsbewertung von Futter-/Lebensmitteln aus gentechnisch veränderten Pflanzen (GVP) ist die Bestimmung der Inhaltsstoffe einschließlich des/der neu ausgeprägten Proteins/e sowie weiterer neu gebildeter Stoffe und der Vergleich mit herkömmlichen (isogenen) Partnern. In vitro Studien und Versuche mit Labortieren sind die nächsten Schritte der Bewertung. Da 70–90 % der von GVP geernteten Biomasse in der Tierernährung eingesetzt werden, sind Fütterungsstudien mit Lebensmittel liefernden Tiere (Zieltieren) von besonderer Bedeutung für die ernährungsphysiologische Bewertung der Futtermittel und werden im Beitrag im Detail betrachtet. Bisher wurden vor allem Fütterungsversuche mit Futtermitteln aus GVP der 1. Generation (ohne wesentliche Veränderungen von Inhaltsstoffen; Pflanzen mit Input traits) durchgeführt. Andere Versuchsansätze sind zur ernährungsphysiologischen und Sicherheitsbewertung von Futter- und Lebensmitteln aus GVP der 2. Generation (Pflanzen mit substantiellen Veränderungen von Inhaltsstoffen; Pflanzen mit Output traits) erforderlich.

References

  1. Alexander TW, Reuter T, Aulrich K, Sharma R, Okine EK, Dixon WT, McAllister TA (2007) A review of the detection and fate of novel plant molecules derived from biotechnology in livestock production. Anim Feed Sci Technol 133:31–62CrossRefGoogle Scholar
  2. ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) (2011) Opinion of the French Agency for Food, Environmental and Occupational Health and Safety—recommendation of carrying our statistical analyses of data from 90-day rat feeding studies in the context of marketing authorisation applications for GM organisms. Request no 2009-SA-0285Google Scholar
  3. Aumaitre A, Aulrich K, Chesson A, Flachowsky G, Piva G (2002) New feeds from genetically modified plants: Substantial equivalence, nutritional equivalence, digestibility, and safety for animals and the food chain. Livest Prod Sci 74:223–238CrossRefGoogle Scholar
  4. Baranowski A, Rosochacki S, Parada R, Jaszczak K, Zimny J, Poloszynowicz J (2006) The effect of diet containing modified triticale on growth and transgenic DNA fate in selected tissues of mice. Anim Sci Pap Rep 24:129–142Google Scholar
  5. BEETLE (2009) Long-term effects of genetically modified (GM) crops on health and the environment (including biodiversity), Executive Summary and Main Report. Federal Office of Consumer Protection and Food Safety (BVL), BLaU-Umweltstudien and Genius GmbH, BerlinGoogle Scholar
  6. Bernal-Santos B, O`Donell SM, Vicine JL, Hartnell GF, Bauman DE (2010) Hot topic: enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J Dairy Sci 93:32–37PubMedCrossRefGoogle Scholar
  7. Brake DE, Evenson DP (2004) A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal and adult testicular development. Food Chem Toxicol 42:29–36PubMedCrossRefGoogle Scholar
  8. Brake DG, Thaler R, Evenson DP (2004) Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry. J Agric Food Chem 52:2097–2102PubMedCrossRefGoogle Scholar
  9. Brookes G, Barfoot P (2008) GMcrop: global socio-economic and environmental impacts 1996–2006. PG Economics Ltd, DorchesterGoogle Scholar
  10. CAST (2006) Safety of meat, milk, and eggs from animals fed crops derived from modern biotechnology. No 34Google Scholar
  11. Cellini F, Chesson A, Coquhonn I, Constable A, Davies HV, Engel K-H, Gatehouse AMR, Kärenlampi S, Kok EJ, Legnay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1123PubMedCrossRefGoogle Scholar
  12. Clark JH, Ipharraguerre IR (2001) Livestock performance: feeding biotech crops. J Dairy Sci 84(E. Suppl. E9–E18):237–249Google Scholar
  13. Davis HV, Kuiper HA (2011) GM-risk assessment in the EU: Current perspective. Aspects Appl Biol 110:37–45Google Scholar
  14. DBT (Department Biotechnology) (2008) Protocols for food and feed safety assessment of GE crops. Dept. of Biotechn., Min. Science and Technol., IndiaGoogle Scholar
  15. Delaney B, Astwood JD, Cunny H (2008) Evaluation of protein safety in the context of agricultural biotechnology. Food Chem Toxicol 46:S71–S97PubMedGoogle Scholar
  16. DLG (2012) DLG-Datenbank Futtermittel (database feedstuffs). http://www.dlg.org/futtermitteldatenbank.html
  17. EFSA (European Food Safety Authority) (2006) Guidance document of the Scientific Panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA J 99:1–100Google Scholar
  18. EFSA (European Food Safety Authority) (2008) Safety and nutritional assessment of GM plant derived food and feed. The role of animal feeding trials. Food Chem Toxicol 46:2–70Google Scholar
  19. EFSA (European Food Safety Authority) (2011b) Scientific opinion on EFSA guidance on repeated-dose 90-day oral toxicity study in rodents on whole food/feed. EFSA J 9(12):2438Google Scholar
  20. EFSA Panel on Genetically Modified Organisms (GMO) (2011a) Scientific opinion on guidance for risk assessment of food and feed from genetically modified plants. EFSA J 9(5):2150Google Scholar
  21. FAO (Food and Agricultural Organisation of the UN) (2009) The state of food and agriculture. Livestock in the balance. RomeGoogle Scholar
  22. FDA (Food and Drug Administration; Redbook) (2000) Guidance for industry and other stakeholders, toxicological principles for the safety assessment of food ingredients. U.S. Department of Health and Human Services, Food and Drug Administration, Centre for Food Safety and Applied Nutrition. http://www.cfsan.fda.gov/guidance.html
  23. Flachowsky G (ed) (2006) Possibilities of decontamination of “Undesirable substances of Annex 5 of the Feed Law (2006)”. Landbauforschung Völkenrode – FAL Agric Res, Spec. Issue 294 (in German)Google Scholar
  24. Flachowsky G (2008) What do animal nutritionists expect from plant breeding? Outlook Agric 37:95–103CrossRefGoogle Scholar
  25. Flachowsky G (2010) Global food security: is there any solution? NovoArgumente 105(3–4):64–68 (in German)Google Scholar
  26. Flachowsky G, Aulrich K (2001) Nutritional assessment of GMO in animal nutrition. J Anim Feed Sci 10(Suppl. 1):181–194Google Scholar
  27. Flachowsky G, Böhme H (2005) Proposals for nutritional assessments of feed from genetically modified plants. J Anim Feed Sci 14:49–70Google Scholar
  28. Flachowsky G, Chesson A, Aulrich K (2005a) Animal nutrition with feeds from genetically modified plants. Arch Anim Nutr 59:1–40PubMedCrossRefGoogle Scholar
  29. Flachowsky G, Halle I, Aulrich K (2005b) Long term feeding of Bt-corn—a ten generation study with quails. Arch Anim Nutr 59:449–451PubMedCrossRefGoogle Scholar
  30. Flachowsky G, Aulrich K, Böhme H, Halle I (2007) Studies on feeds from genetically modified plants (GMP) contributions to nutritional and safety assessment. Anim Feed Sci Technol 133:2–30CrossRefGoogle Scholar
  31. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS (2011) Solutions for a cultivated planet. Nature 478:337–342PubMedCrossRefGoogle Scholar
  32. Forster IP, Dominy WG, Obaldo LC, Hartnell GF, Sanders EF, Hickman TC, Ruebelt MC (2011) The effect of soybean oil containing stearidonic acid on growth performance, n-3 fatty acid deposition and sensory characteristics of pacific white shrimp (Litopenaeus vannamei). Aquacult Nutr 17:200–213CrossRefGoogle Scholar
  33. FSANS (2007) The role of animal feeding studies in the safety assessment of genetically modified foods. Rep. Workshop of Food Standards Australia New Zealand, CanberraGoogle Scholar
  34. Gibbs RA, Rymer C, Givens DI (2010) Long-chain n-3 PUFA intakes in the UK and the potential of a chicken meat prototype to increase them. Proc Nutr Soc 69:144–155PubMedCrossRefGoogle Scholar
  35. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Wawrence D, Muir J, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  36. Halle I, Aulrich K, Flachowsky G (2006) Four generations feeding GMO-corn to laying hens. Proc Soc Nutr Physiol 15:114 (Abstr.)Google Scholar
  37. Howe JA, Tanumihardjo SA (2006) Cartenoid-biofortified maize maintains adequate vitamin A status in Mongolian gerbils. J Nutr 136:2562–2567PubMedGoogle Scholar
  38. ILSI (2003a) Best practices for the conduct of animal studies to evaluate crops genetically modified for input traits. International Life Sciences Institute, Washington, D.C. http//www.ilsi.org/file/bestpracticescas.pdf
  39. ILSI (2003b) Crop compositional database. Accessed 2003 July 14; Update 2009Google Scholar
  40. ILSI (2007) Best practices for the conduct of animal studies to evaluate crops genetically modified for output traits. Int Life Sci Inst, Washington DCGoogle Scholar
  41. James C (2012) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43. ISAAA, IthacaGoogle Scholar
  42. Kilic A, Akay MT (2008) A three generation study with genetically modified Bt corn in rats: biochemical and histopathological investigation. Food Chem Toxicol 46:1164–1170PubMedCrossRefGoogle Scholar
  43. Kitessa SM, Young P (2011) Enriched milk fat with n-3 polyunsaturated fatty acids by supplementing grazing dairy cows with ruminally protected echium oil. Anim Feed Sci Technol 170:35–44CrossRefGoogle Scholar
  44. Kleter GA, Kok EJ (2010) Safety assessment of biotechnology used in animal production, including genetically modified (GM) feed and GM animals—a review. Anim Sci Pap Rep 28:105–114Google Scholar
  45. Kok E, Kuiper H (2003) Comparative safety assessment of biotech crops. Trends Biotechnol 21:439–444PubMedCrossRefGoogle Scholar
  46. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived feeds. Reg Toxicol Pharmacol 50:98–113CrossRefGoogle Scholar
  47. Krzyzowska M, Wincenciak M, Winnicka A, Baranowski A, Jaszczak K, Zimny J, Niemialtowski M (2010) The effect of multigenerational diet containing genetically modified triticale on immune system in mice. Polish J Vet Sci 13:423–430Google Scholar
  48. Ladics GS, Knippels LM, Penninks AH (2010) Review of animal models to predict the potential allergenicity of novel proteins in genetically modified crops. Regul Toxicol Pharmacol 56:212–224PubMedCrossRefGoogle Scholar
  49. Mazza R, Soave M, Morlacchini M, Piva G, Marocco A (2005) Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res 14:775–785PubMedCrossRefGoogle Scholar
  50. Meja L, Jacobs CM, Utterback PL, Parsons CM, Rice D, Sanders C, Smith B, Iiams C, Sauber T (2010) Evaluation of the nutritional equivalency of soybean meal with the genetically modified trait DP-3O5423-1 when fed to laying hens. Poultry Sci 89:2634–2639CrossRefGoogle Scholar
  51. Nemeth A, Wurz A, Artim L, Charlton S, Dana G, Glenn K, Hunst P, Jennings I, Shilto R, Song P (2004) Sensitive PCR analysis of animal tissue samples for fragments of endogenous and transgenic plant DNA. J Agric Food Chem 52:6129–6135PubMedCrossRefGoogle Scholar
  52. NRC (National Research Council) (1995) Nutrient requirements for laboratory animals. Forth revised ed., National Academy Press, Washington, DCGoogle Scholar
  53. OECD (1993) Safety evaluation of foods derived by modern biotechnology. Concepts and principles. OECD, ParisGoogle Scholar
  54. OECD (1998a) OECD guidelines for the testing of chemicals—Repeated dose 28-day oral toxicity study in rodents, 407. http://browse.oecbookshop.org/oecd/pdfs/free/9740701e.pdf
  55. OECD (1998b) Guideline for the testing of chemicals—repeated dose 90-day oral toxicity study in rodents, 408. http://browse.oecdbookshop.org/oecd/pdfs/free/9740801e.pdf
  56. OECD (2001a) Series on the safety of novel foods and feeds no. 1. Consensus document on key nutrients and key toxicants in low erucic acid rapeseed (canola). OECD, ParisGoogle Scholar
  57. OECD (2001b) Series on the safety of novel foods and feeds no. 2: Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients. OECD, ParisGoogle Scholar
  58. OECD (2003) Series on the safety of novel foods and feeds no. 7: consensus document on compositional considerations for new varieties of bread wheat (Triticum aestivum): key food and feed nutrients, anti-nutrients and toxicants. OECD, ParisGoogle Scholar
  59. OECD (2004a) Series on the afety of novel foods and feeds no. 10: consensus document on compositional considerations for new varieties of rice (Oryza sativa): key food and feed nutrients and anti-nutrients. OECD, ParisGoogle Scholar
  60. OECD (2004b) Series on the safety of novel foods and feeds no. 11: consensus document on compositional considerations for new varieties of cotton (Gossypium hirsutum and Gossypium barbadense): key food and feed nutrients and anti-nutrients. OECD, ParisGoogle Scholar
  61. OECD (2004c) Series on the safety of novel foods and feeds no. 12: consensus document on compositional considerations for new varieties of barley (Hordeum vulgare L.): key food and feed nutrients and anti-nutrients. OECD, ParisGoogle Scholar
  62. Rhee GS, Cho DH, Won YH, Soek JH, Kim SS, Kwack SJ, Lee RD, Chae SY, Kim JW, Lee BM, Park KL, Choi KS (2005) Multigeneration reproductive and developmental toxicity study of bar gene inserted intogenetically modified potato on rats. J Toxicol Environ Health 68:2263–2276CrossRefGoogle Scholar
  63. Russell WMS, Burch RL (1959) The principles of humane experimental technique, Special Ed., Universities Fed. for Animal Welfare, Potters BarGoogle Scholar
  64. Rymer C, Hartnell GF, Givens DI (2011) The effect of feeding modified soyabean oil enriched with C18:4 n-3 to broilers on the deposition of n-3 fatty acids in chicken meat. Br J Nutr 105:866–878PubMedCrossRefGoogle Scholar
  65. SCAR (EU Commission—Standing Committee on Agricultural Research (2008) New challenges for agricultural research. Climate change, rural development, agricultural knowledge systems. The 2nd SCAR Foresight Exercise, BrusselsGoogle Scholar
  66. Seralini GE, Mesnage R, Clair E, Gress S, de Vendomois JS, Cellier D (2011) Genetically modified crops safety assessments: present limits and possible improvements. Environ Sci Eur 23:10CrossRefGoogle Scholar
  67. Sharma R, Damgaard D, Alexander TW, Dugan MER, Aalhus JL, Stanford K, McAllister TA (2006) Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal. J Agric Food Chem 54:1699–1709PubMedCrossRefGoogle Scholar
  68. Snell C, Bernheim A, Bergé JB, Kuntz M, Gerard P, Paris A, Ricroch AE (2012) Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials. A literature review. Food Chem 50:1134–1148CrossRefGoogle Scholar
  69. Spencer JD, Allee GL, Sauber TE (2000) Phosphorus bioavailability and digestibility of normal and genetically modified low-phytate com for pigs. J Anim Sci 78:675–681PubMedGoogle Scholar
  70. Spiekers H, Meyer HHD, Schwarz FJ (2009) Effects of long term utilization of genetically modified maize (MON 810) in dairy cattle feeding on performance and metabolism parameters. Schriftenreihe, Bayerische Landesanstalt für Landwirtschaft (LfL), vol 18 (in German)Google Scholar
  71. Stein AJ, Rodriguez-Cerezo E (2009) The global pipeline of new GM-crops. JRC/ipts, EUR 23496 ENGoogle Scholar
  72. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agric Organization of the United Nations (FAO), RomeGoogle Scholar
  73. Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA (2009) Golden rice in an effective source of vitamin A. Am J Clin Nutr 89:1776–1783PubMedCrossRefGoogle Scholar
  74. The Royal Society (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. RS policy document 11/09, issued Oct. 2009 RS 1608. ISBN: 978-0-85403-784-1Google Scholar
  75. Trabalza-Marinucci M, Brandi G, Rondine C, Avelini L, Giammarini C, Costarelli S, Acuti G, Orlandi C, Filippini G, Chiradia E, Malatesta M, Crotti S, Antonini C, Amagliani G, Manuali E, Mastrogiacomo AR, Moscati L, Haounet MN, Gaiti A, Magnani M (2008) A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep. Livest Sci 113:178–190CrossRefGoogle Scholar
  76. Tudisco R, Mastellone V, Cutrignelli MI, Lombardi P, Bovera F, Mirabella N, Piccolo G, Calabro S, Avallone L, Infascelli F (2010) Fate of transgenic DNA and metabolic effects in goats fed genetically modified soybean and in their offsprings. Animal 4:1662–1671PubMedCrossRefGoogle Scholar
  77. Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J Nutr 133:4271–4274PubMedGoogle Scholar
  78. Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr 139:5–10PubMedGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2012

Authors and Affiliations

  • Gerhard Flachowsky
    • 1
  • Helmut Schafft
    • 2
  • Ulrich Meyer
    • 1
  1. 1.Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI)Federal Research Institute for Animal HealthBraunschweigGermany
  2. 2.Federal Institute for Risk Assessment (BfR)Unit Feed and Feed AdditivesBerlinGermany

Personalised recommendations