Advertisement

Skyfarming an ecological innovation to enhance global food security

  • Jörn Germer
  • Joachim Sauerborn
  • Folkard Asch
  • Jan de Boer
  • Jürgen Schreiber
  • Gerd Weber
  • Joachim Müller
LEITTHEMA: FOOD SECURITY

Abstract

Population growth increases the demand for food and thus leads to expansion of cultivated land and intensification of agricultural production. There is a definite limit to both of these options for food security and their multiple negative effects on the environment undermine the aim for sustainability. Presently the impact of the Green Revolution on crop production is levelling off at high yields attained and even the potential of large scale irrigation programmes and transgenic crops seem to be limited in view of the expected increase in demand for food. Moreover, climate change threatens to affect agricultural production across the globe. Skyfarming represents a promising approach for food production that is largely environment independent and therefore immune to climate change. Optimal growing conditions, shielded from weather extremes and pests are aimed at raising plant production towards the physiological potential. Selecting rice as a pioneer crop for Skyfarming will not only provide a staple for a large part of the global population, but also significantly reduce the greenhouse gas emission caused by paddy cultivation. Multiplication of the benefits could be achieved by stacking production floors vertically. In Skyfarming the crop, with its requirements for optimal growth, development and production, determines the system’s design. Accordingly, the initial development must focus on the growing environment, lighting, temperature, humidity regulation and plant protection strategies as well as on the overall energy supply. For each of these areas potentially suitable technologies are presented and discussed.

Keywords

Food security Population growth Climate change Crop production Vertical farming Aeroponics Staple food Rice 

Zusammenfassung

Der steigende Bedarf an Nahrungsmitteln infolge einer weiterhin exponentiell wachsenden Weltbevölkerung erfordert enorme Anstrengungen seitens der Agrarwirtschaft, die bislang mit Ausdehnung der Anbauflächen und mit Intensivierung der landwirtschaftlichen Produktion reagierte. Beiden Optionen zur Sicherung der Welternährung sind physische und biologische Grenzen gesetzt und die landwirtschaftlichen Aktivitäten führen ihrerseits zu mannigfaltigen Umweltwirkungen, die die ökologische Tragfähigkeit der Erde mindern können. Durch die Grüne Revolution konnte ein rasanter Anstieg der Nahrungsmittelproduktion erreicht werden, jedoch ist in einigen Regionen das Ertragspotential bestimmter Feldfrüchte nahezu erreicht und die Erwirtschaftung zusätzlicher Ertragssteigerungen wird zunehmend schwieriger. Auch der mögliche Beitrag von Bewässerungsprogrammen und seitens genetisch veränderter Varietäten scheint angesichts des zu erwartenden Anstiegs beim Nahrungsmittelbedarf begrenzt. Darüber hinaus sind negative Auswirkungen des Klimawandels auf die landwirtschaftliche Produktion zu erwarten. Skyfarming ist ein Ansatz zur weitgehend umwelt- und somit klimaunabhängigen Nahrungsmittelproduktion im Hochhaus. Unter optimalen Wachstumsbedingungen, geschützt vor Wetterextremen und Schadorganismen soll das physiologische Produktionspotential der Pflanzen weitestgehend ausgeschöpft werden. Mit Reis als Modellpflanze für Skyfarming wird einerseits ein wichtiges Grundnahrungsmittel bereitgestellt und andererseits die Möglichkeit eröffnet die durch den Naßreisanbau verursachte Emissionen klimarelevanter Gase signifikant zu reduzieren. Eine Vervielfachung des Ertrages ließe sich durch die vertikale Anordnung mehrerer Produktionsebenen erreichen. Bei Skyfarming steht die Kulturpflanze, mit ihren spezifischen Ansprüchen für optimale Entwicklung und Wachstum im Vordergrund eines systemischen Ansatzes. Dementsprechend muss der Fokus zu Beginn der Technologieentwicklung auf folgende Bereiche gerichtet sein: Wachstumsraum, Beleuchtung, Temperatur, Luftfeuchteregulierung, Pflanzenschutzstrategien, sowie – übergeordnet – Energieversorgung. Für jeden dieser Bereiche werden entsprechende Technologien vorgestellt und diskutiert.

References

  1. Ahmad S, Li C, Dai G, Zhan M, Wang J, Pan S, Cao C (2009) Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res 106(1):54–61CrossRefGoogle Scholar
  2. Asch F, Dingkuhn M, Sow A, Audebert A (2005) Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Res 93(2–3):223–236CrossRefGoogle Scholar
  3. Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE et al (2002) Economic reasons for conserving wild nature. Science 297(5583):950–953PubMedCrossRefGoogle Scholar
  4. Bouman B, Humphreys E, Tuong T, Barker R (2007) Rice and water. Adv Agron 92:187–237CrossRefGoogle Scholar
  5. Bruinsma J (2003) World agriculture: towards 2015/2030: an FAO study. Earthscan Publications Ltd., LondonGoogle Scholar
  6. Campen JB, Bot GPA, de Zwart HF (2003) Dehumidification of greenhouses at northern latitudes. Biosyst Eng 86(4):487–493CrossRefGoogle Scholar
  7. Casas W, Schmitz G (2005) Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building. Energy Build 37(5):493–501CrossRefGoogle Scholar
  8. Chapagain A, Hoekstra A (2011) The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol Econ 70(4):749–758CrossRefGoogle Scholar
  9. Clive J (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA, IthacaGoogle Scholar
  10. Cohen MN (1977) Food crisis in prehistory: overpopulation and the origins of agriculture. Yale University Press, New HavenGoogle Scholar
  11. Cohen J (1997) Population, economics, environment and culture: an introduction to human carrying capacity. J Appl Ecol 34(6):1325–1333CrossRefGoogle Scholar
  12. Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19(2):292–305CrossRefGoogle Scholar
  13. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260CrossRefGoogle Scholar
  14. de Boer J, Mergenthaler K (2011) Ein weltweit anwendbares einfaches Kennwertsystem zur Bewertung der Tageslichtversorgung von Innenräumen mit unterschiedlichen Fassaden. Bericht des Fraunhofer-Instituts für Bauphysik, Bericht WB 154/2011, StuttgartGoogle Scholar
  15. de Vries ME, Rodenburg J, Bado BV, Sow A, Leffelaar PA, Giller KE (2010) Rice production with less irrigation water is possible in a Sahelian environment. Field Crops Res 116(1–2):154–164CrossRefGoogle Scholar
  16. Despommier D (2010) The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal für Verbraucherschutz und Lebensmittelsicherheit. http://www.springerlink.com/content/n727450821q512mt/. Accessed 4 Feb 2011
  17. Diamond J (2005) Collapse. Penguin Group, New YorkGoogle Scholar
  18. Dingkuhn M, Sow A, Samb A, Diack S, Asch F (1995) Climatic determinants of irrigated rice performance in the Sahel—I. Photothermal and micro-climatic responses of flowering. Agric Syst 48(4):385–410CrossRefGoogle Scholar
  19. Dinuccio E, Balsari P, Gioelli F, Menardo S (2010) Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour Technol 101(10):3780–3783PubMedCrossRefGoogle Scholar
  20. Dobermann A, Fairhurst T (2000) Rice: nutrient disorders and nutrient management. Int. Rice Res. Inst. Manila, PhilippinesGoogle Scholar
  21. Döll P (2010) Global irrigation map—Goethe-Universität. http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html. Accessed 10 Jan 2011
  22. Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149(1):7–13PubMedCrossRefGoogle Scholar
  23. Ehrlich PPR, Ehrlich AH, Daily GC (1997) The stork and the plow: the equity answer to the human dilemma. Yale University Press, New HavenGoogle Scholar
  24. Ertas A, Anderson E, Kiris I (1992) Properties of a new liquid desiccant solution—lithium chloride and calcium chloride mixture. Sol Energy 49(3):205–212CrossRefGoogle Scholar
  25. Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620):758–762PubMedCrossRefGoogle Scholar
  26. FAO (2011) FAO statistical database. http://faostat.fao.org/. Accessed 1 Feb 2011
  27. Fischetti M (2008) Growing VERTICAL. Scientific American Earth 3.0. 18(4):74–77Google Scholar
  28. Germer J, Sauerborn J (2008) Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10:697–716CrossRefGoogle Scholar
  29. Giger E, Prem R, Leen M (2009) Increase of agricultural production based on genetically modified food to meet population growth demands. Sch Dr Stud J 1(1):98–124Google Scholar
  30. Gilbert N (2009) The disappearing nutrient. Nature 461(7265):716–718PubMedCrossRefGoogle Scholar
  31. Grenz JH, Sauerborn J (2007) The potential of organic agriculture to contribute to sustainable crop production and food security in Sub-Saharan Africa. J Agric Rural Dev Trop Subtrop 89:50–84Google Scholar
  32. Gunawardena TA, Fukai S, Blamey FPC (2003) Low temperature induced spikelet sterility in rice. II. Effects of panicle and root temperatures. Aust J Agric Res 54(10):947–956CrossRefGoogle Scholar
  33. Haefele S, Siopongco J, Boling A, Bouman B, Tuong T (2009) Transpiration efficiency of rice (Oryza sativa L.). Field Crops Res 111(1–2):1–10CrossRefGoogle Scholar
  34. Hessel L, Bialik K, David B, Ella G (2003) Self contained fully automated robotic crop production facility. United States Patent, USAGoogle Scholar
  35. Hülsbergen KJ, Feil B, Biermann S, Rathke GW, Kalk WD, Diepenbrock W (2001) A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric Ecosyst Environ 86(3):303–321CrossRefGoogle Scholar
  36. Jain S, Bansal P (2007) Performance analysis of liquid desiccant dehumidification systems. Int J Refrig 30(5):861–872CrossRefGoogle Scholar
  37. Janssen BH (1998) Efficient use of nutrients: an art of balancing. Field Crops Res 56(1–2):197–201CrossRefGoogle Scholar
  38. Ju J, Yamamoto Y, Wang Y, Shan Y, Dong G, Miyazaki A, Yoshida T (2009) Genotypic differences in dry matter accumulation, nitrogen use efficiency and harvest index in recombinant inbred lines of rice under hydroponic culture. Plant Prod Sci 12(2):208–216CrossRefGoogle Scholar
  39. Kratzeisen M, Starcevic N, Martinov M, Maurer C, Müller J (2010) Applicability of biogas digestate as solid fuel. Fuel 89(9):2544–2548CrossRefGoogle Scholar
  40. Lakdawalla D, Philipson T, Bhattacharya J (2005) Welfare-enhancing technological change and the growth of obesity. Am Econ Rev 95(2):253–257CrossRefGoogle Scholar
  41. Lee WF (2010) Cooling capacity assessment of semi-closed greenhouses. MSc thesis. http://etd.ohiolink.edu/view.cgi/ris.cgi?acc_num=osu1274996517. Accessed 17 Feb 2011
  42. Lee SC, Chung I, Jin YJ, Song YS, Seo SY, Park BS et al (2008) Momilactone B, an allelochemical of rice hulls, induces apoptosis on human lymphoma cells (Jurkat) in a micromolar concentration. Nutr Cancer 60(4):542–551PubMedCrossRefGoogle Scholar
  43. Liao Y, Gao Z, Bao Z, Huang Q, Feng G, Xu D et al (2008) China’s water pricing reforms for irrigation: effectiveness and impact. IWMI, ColomboGoogle Scholar
  44. Lösch R (2001) Wasserhaushalt der Pflanzen: 61 Tabellen. Quelle & Meyer, WiebelsheimGoogle Scholar
  45. Maraseni TN, Mushtaq S, Maroulis J (2009) Greenhouse gas emissions from rice farming inputs: a cross-country assessment. J Agric Sci 147(02):117–126CrossRefGoogle Scholar
  46. Mumme J, Linke B, Tölle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101(2):592–599PubMedCrossRefGoogle Scholar
  47. Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins A, Kaltenborn B (eds) (2009) The environmental food crisis—the environment’s role in averting future food crisis. United Nations Environment Programme, GRID-Arendal, Birkeland Trykkeri AS, NorwayGoogle Scholar
  48. O’Riordan T, Stoll-Kleemann S (2002) Biodiversity, sustainability and human communities: protecting beyond the protected. Cambridge University Press, LondonCrossRefGoogle Scholar
  49. Oerke E, Dehne H (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Protect 23(4):275–285CrossRefGoogle Scholar
  50. Osram (2010) Flower Power—Lichtstarke LED bringen Pflanzen zum Wachsen, OSRAM LED für hohe Effizienz bei 660 nm. Press release, Osram GmbH, RegensburgGoogle Scholar
  51. Overton G (2010) Harnessing sunlight moves beyond conventional photovoltaics. Laser Focus World 46(6):59–63Google Scholar
  52. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14(1):53–67CrossRefGoogle Scholar
  53. Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78(3):660S–663SPubMedGoogle Scholar
  54. Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht. Accessed 10 Jan 2011Google Scholar
  55. PointCarbon (2011) Home—Point Carbon—providing critical insights into energy and environmental markets. http://www.pointcarbon.com/. Accessed 15 Feb 2011
  56. Reynolds MP (ed) (2010) Climate change and crop production. CABI, OxfordshireGoogle Scholar
  57. Riethus H, Bau H (1970) Das Turmgewächshaus nach Ruthner [Wien] und seine Bedeutung für den Gemüsebau. Techn. Univ., Universitätsbibliothek, Abt. PublikationenGoogle Scholar
  58. Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80(1–3):5–22CrossRefGoogle Scholar
  59. Rost S, Gerten D, Hoff H, Lucht W, Falkenmark M, Rockstrom J (2009) Global potential to increase crop production through water management in rainfed agriculture. Environ Res Lett 4(4):044002CrossRefGoogle Scholar
  60. Ruthner O (1966) Apparatus for the artificial cultivation of plants, bacteria, and similar organism. United States Patent Office, USAGoogle Scholar
  61. Sachs JD (2008) Common wealth: economics for a crowded planet. Penguin Press, New YorkGoogle Scholar
  62. Sage RF (1995) Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob Change Biol 1(2):93–106CrossRefGoogle Scholar
  63. Sass RL (2000) CH4 emissions from rice agriculture. In: IPCC (ed) Good practice guidance and uncertainty management in national greenhouse gas inventories. IPCC, GenevaGoogle Scholar
  64. Schmierer M (2010) Optimierung von aeroponischen Anbausystemen von Reis. Diplomarbeit thesis, Universität Hohenheim, Stuttgart, Germany. http://www.asch-online.eu/downloads/Theses/Diplomarbeit-Schmierer-webversion.pdf. Accessed 11 Feb 2011
  65. Schroeder TC, Barkley AP, Schroeder KC (1996) Income growth and international meat consumption. J Int Food Agribus Mark 7(3):15CrossRefGoogle Scholar
  66. Setter TL, Greenway H (1988) Growth reductions of rice at low root temperature: decreases in nutrient uptake and development of chlorosis. J Exp Bot 39(6):811–829CrossRefGoogle Scholar
  67. Sheehy JE, Mitchell P (2011) Rice and global food security: the race between scientific discovery and catastrophe. In: Pasternak C (ed) ACCESS NOT EXCESS—the search for better nutrition. Smith-Gordon, Cambridgeshire, pp 81–90Google Scholar
  68. Shrestha S, Asch F, Dingkuhn M, Becker M (2011) Cropping calendar options for rice-wheat production systems at high-altitudes. Field Crops Res 121(1):158–167CrossRefGoogle Scholar
  69. Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J Hydrol 384(3–4):198–217CrossRefGoogle Scholar
  70. Stuart T (2009) Waste: the true cost of what the global food industry throws away. Penguin, LondonGoogle Scholar
  71. Stürz S, Asch F, Sow A, Muller B, Manneh B (2010) Intra-annual genotypic patterns of growth and water use of irrigated rice in the Sahel. In: Thielkes E (ed) World food system—a contribution from Europe. Cuvillier Verlag, GöttingenGoogle Scholar
  72. Ter Steege H (2010) Will tropical biodiversity survive our approach to global change? Biotropica 42(5):561–562CrossRefGoogle Scholar
  73. Thøgersen J (1996) Wasteful food consumption: trends in food and packaging waste. Scand J Manag 12(3):291–304CrossRefGoogle Scholar
  74. Tilman D (1998) The greening of the green revolution. Nature 396(6708):211–212CrossRefGoogle Scholar
  75. Toyomasu T, Kagahara T, Okada K, Koga J, Hasegawa M, Mitsuhashi W et al (2008) Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci Biotechnol Biochem 72(2):562–567PubMedCrossRefGoogle Scholar
  76. Tuong T, Bouman B (2003) Rice production in water scarce environments. In: Kijne JW, Barker R, Molden DJ (eds) Water productivity in agriculture: limits and opportunities for improvement. CABI, Wallingford, pp 53–67CrossRefGoogle Scholar
  77. UNPP (2009) World population prospects: the 2008 revision population database. United Nation Population Division. http://esa.un.org/UNPP/. Accessed 9 Dec 2010
  78. Valster A (2010) Increase growth yield in horticulture by improvements in LED lighting. In: Haverlag M, Kroesen G, Taguchi T (eds) Proceedings of the 12th international symposium on the science and technology of light sources and the 3th international conference on white LEDs and solid state lighting, Eindhoven, The Netherlands, pp 83–84Google Scholar
  79. Weeks JR (2007) Population: an introduction to concepts and issues. Wadsworth Publishing, FlorenceGoogle Scholar
  80. Wetter LR, Constabel F (1982) Plant tissue culture methods. National Research Council of Canada, Prairie Regional Lab., SaskatoonGoogle Scholar
  81. White TD, Asfaw B, DeGusta D, Gilbert H, Richards GD, Suwa G, Clark Howell F (2003) Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423(6941):742–747PubMedCrossRefGoogle Scholar
  82. Yang J, Zhang J (2010) Crop management techniques to enhance harvest index in rice. J Exp Bot 61(12):3177–3189PubMedCrossRefGoogle Scholar
  83. Yoshida S (1972) Physiological aspects of grain yield. Annu Rev Plant Physiol 23(1):437–464CrossRefGoogle Scholar
  84. Yoshida S (1981) Fundamentals of rice crop science. Int. Rice Res. Inst. Manila, PhilippinesGoogle Scholar
  85. Zhang D, Lanier SM, Downing JA, Avent JL, Lum J, McHale JL (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195(1):72–80CrossRefGoogle Scholar
  86. Ziska LH, Manalo PA, Ordonez RA (1996) Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. J Exp Bot 47(9):1353–1359CrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2011

Authors and Affiliations

  • Jörn Germer
    • 1
  • Joachim Sauerborn
    • 1
  • Folkard Asch
    • 1
  • Jan de Boer
    • 2
  • Jürgen Schreiber
    • 3
  • Gerd Weber
    • 4
  • Joachim Müller
    • 5
  1. 1.Institut für Pflanzenproduktion und Agrarökologie in den Tropen und SubtropenUniversität HohenheimStuttgartGermany
  2. 2.Fraunhofer-Institut für BauphysikStuttgartGermany
  3. 3.Institut für Baustofflehre, Bauphysik, Technischen Ausbau und EntwerfenUniversität StuttgartStuttgartGermany
  4. 4.Institut für Pflanzenzüchtung, Saatgutforschung und PopulationsgenetikUniversität HohenheimStuttgartGermany
  5. 5.Institut für AgrartechnikUniversität HohenheimStuttgartGermany

Personalised recommendations