Advertisement

American Potato Journal

, Volume 73, Issue 8, pp 325–335 | Cite as

Characterization ofSolanum tuberosum simple sequence repeats and application to potato culiwar identification

  • L. M. Kawchuk
  • D. R. Lynch
  • J. Thomas
  • B. Penner
  • D. Sillito
  • F. Kulcsar
Article
  • 119 Downloads

Abstract

With the continued introduction of new potato cultivars, accurate identification is becoming difficult but is essential for maintaining cultivar integrity and Plant Breeders’ Rights. Hypervariable DNA sequences, referred to as simple sequence repeats (SSRs) or microsatellites, have been reported to be an excellent source of genetic markers. To determine the abundance, distribution, and composition of SSRs withinSolanium tuberosum, 252 sequences were searched for tetranucleotide and smaller SSRs with a minimum length of 20 nucleotides and a maximum discrepancy of two nucleotides. In total, 40 unique SSRs were observed in the 252S. tuberosum sequences examined and occurred at a frequency of one SSR every 8.1 kb. To assess the ability of site-specific amplified SSRs to identify potato cultivars, a simple (TCAC)m and compound (TCAC)m • (CTT)n SSR 5’ to the starch synthase gene and a compound (C)p • (CT)q • (AT)r • (G)s SSR 5’ to the sequence encoding mature proteinase inhibitor I, were examined and shown to produce unique DNA profiles for 73 of 95 tetraploid cultivars. In total, 24 alleles were observed at these loci and the accurately sized amplified DNA products can be used to establish a database for cultivar identification. Site-specific amplified alleles were somatically stable and have been conserved in clonal variants of Russet Burbank independently maintained for almost seven decades, a characteristic essential for cultivar identification. As genetic markers, the abundant, informative, and easily examined site-specific amplified alleles of SSRs are ideal for quickly and accurately determining cultivar identity of S.tuberosum ssp.tuberosum.

Additional Key Words

Microsatellites allelic stability PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Akkaya, M.S., A.A. Bhagwat, and P.B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139.PubMedGoogle Scholar
  2. 2.
    Chase, R.W. 1989. North American Potato Variety Inventory. Potato Association of America, Orono, Maine. 10 pp.Google Scholar
  3. 3.
    Cleveland, T.E., R.W. Thornburg, and C.A. Ryan. 1987. Molecular characterization of a wound-inducible inhibitor I gene from potato and the processing of its mRNA and protein. Plant Mol Biol 8:199–207.CrossRefGoogle Scholar
  4. 4.
    Condit, R. and S.P. Hubbell. 1991. Abundance and DNA sequence of 2-base repeat regions in tropical tree genomes. Genome 34:66–71.PubMedGoogle Scholar
  5. 5.
    Demeke, T., L.M. Kawchuk, and D.R. Lynch. 1993. Identification of potato cultivars and clonal variants by random amplified polymorphic DNA analysis. Am Potato J 70:561–570.Google Scholar
  6. 6.
    Desborough, S. and S.J. Peloquin. 1968. Potato variety identification by use of electrophoretic patterns of tuber proteins and enzymes. Am Potato J 45:220–229.Google Scholar
  7. 7.
    Doyle, J.J. and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13–15.Google Scholar
  8. 8.
    Estoup, A., M. Solignac, M. Harry, and J. Cornuet. 1993. Characterisation of (GT)n and (CT)n microsatellites in two insect species:Apis mellifera andBambus terrestris. Nucleic Acids Res 21:1427–1431.PubMedCrossRefGoogle Scholar
  9. 9.
    Gebhardt, C., C. Blomendahl, U. Schachtschabel, T. Debener, F. Salamini, and E. Ritter. 1989. Identification of 2n breeding lines and 4n varieties of potato (Solanum tuberosum, ssp.tuberosum) with RFLP-fingerprints. Theor Appl Genet 78:16–22.CrossRefGoogle Scholar
  10. 10.
    Gupta, M., Y.-S. Chyi, J. Romero-Severson, and J.L. Owen. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006.CrossRefGoogle Scholar
  11. 11.
    Hamada, H., M.G. Petrino, and T. Kakunaga. 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA 79:6465–6469.PubMedCrossRefGoogle Scholar
  12. 12.
    Kijas, J.M.H., J.C.S. Fowler, C.A. Garbett, and M.R. Thomas. 1994. Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. BioTechniques 16:657–662.Google Scholar
  13. 13.
    Lagercrantz, U., H. Ellegren, and L. Andersson. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee, J.S. and J.-S. Park. 1989. Nucleotide sequence of a proteinase inhibitor I gene in potato. Korean J Botany 32:67–78.Google Scholar
  15. 15.
    Litt, M. and J.A. Luty. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401.PubMedGoogle Scholar
  16. 16.
    Love, J.M., A.M. Knight, M.A. McAleer, and J.A. Todd. 1990. Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res 18:4123–4130.PubMedCrossRefGoogle Scholar
  17. 17.
    Love, S.L., A.L. Thompson, T.P. Baker, and D.L. Corsini. 1992. Comparison of Russet Burbank clones from various geographical regions of the United States and Canada. Am Potato J 69:299–307.Google Scholar
  18. 18.
    Moore, S.S., L.L. Sargeant, T.J. King, J.S. Mattick, M. Georges, and D.J.S. Hetzel. 1991. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10:654–660.PubMedCrossRefGoogle Scholar
  19. 19.
    Moran, C. 1993. Microsatellite repeats in pig (Sus domestica) and chicken (Gallus damesticus) genomes. J Hered 84:274–280.PubMedGoogle Scholar
  20. 20.
    Morgante, M. and A.M. Olivieri. 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182.PubMedCrossRefGoogle Scholar
  21. 21.
    Neilan, B.A., D.A. Leigh, E. Rapley, and B.L. McDonald. 1994. Microsatellite genome screening: rapid non-denaturing, non-isotopic dinucleotide repeat analysis. BioTechniques 17:708–712.PubMedGoogle Scholar
  22. 22.
    Rico, C., D. Zadworny, U. Kuhnlein, and G.J. Fitzgerald. 1993. Characterization of hypervariable microsatellite loci in the threespine sticklebackGasterosteus aculeatus. Mol Ecol 2:271–272.PubMedGoogle Scholar
  23. 23.
    Rohde, W., D. Becker, B. Kull, and F. Salamini. 1990. Structural and functional analysis of two waxy gene promoters from potato. J Genet & Breed 44:311–315.Google Scholar
  24. 24.
    Rohlf, F.J. 1989. NTSYS-pc numerical taxonomy and multivariate analysis system. Exeter, New York.Google Scholar
  25. 25.
    Rus-Kortekaas, W., M.J.M. Smulders, P. Arens, and B. Vosman. 1994. Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome 37:375–381.Google Scholar
  26. 26.
    Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.PubMedCrossRefGoogle Scholar
  27. 27.
    Schlotterer, C., B. Amos, and T. Diethard. 1991. Conservation of polymorphic simple sequence loci in cetacean species. Nature 354:63–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Shaghai Maroof, MA, R.M. Biyashev, G.P. Yang, Q. Zhang, and W. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci 91:5466–5470.CrossRefGoogle Scholar
  29. 29.
    Stegemann, H. and D. Schnick. 1985. Index 1985 of European potato varieties. Mitteilungen aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft. Berlin. Heft 227.Google Scholar
  30. 30.
    Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471.PubMedCrossRefGoogle Scholar
  31. 31.
    Tautz, D. and M. Renz. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res 12:4127–4138.PubMedCrossRefGoogle Scholar
  32. 32.
    Thomas, M.R., S. Matsumoto, P. Cain, and N.S. Scott. 1993. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180.Google Scholar
  33. 33.
    van der Leij, F.R., R.G.F. Visser, A.S. Ponstein, E. Jacobson, and W.J. Feenstra. 1991. Sequence of the structural gene for granule-bound starch synthase of potato (Solarium tuberosum L.) and evidence for a single point deletion in theamf allele. Mol Gen Genet 228:240–248.PubMedCrossRefGoogle Scholar
  34. 34.
    Veilleux, R.E., L.Y. Shen, and M.M. Paz. 1995. Analysis of the genetic composition of anther-derived potato by randomly amplified polymorphic DNA and simple sequence repeats. Genome 38:1153–1162.PubMedGoogle Scholar
  35. 35.
    Wang, Z., J.L. Weber, G. Zhong, and S.D. Tanksley. 1994. Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6.Google Scholar
  36. 36.
    Weber, J.L. and P.E. May. 1989. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396.PubMedGoogle Scholar
  37. 37.
    Weising, K., B. Beyermann, J. Ramser, and G. Kahl. 1991. Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12:159–169.PubMedCrossRefGoogle Scholar
  38. 38.
    Weising, K., F. Weigand, A.J. Driesel, G. Kahl, H. Zischler, and J.T. Epplen. 1989. Polymorphic simple GATA/GACA repeats in plant genomes. Nucl Acids Res 17:10128.PubMedCrossRefGoogle Scholar
  39. 39.
    Yuille, M.A.R., D.R. Goudie, N.A. Affara, and M.A. Ferguson-Smith. 1991. Rapid determination of sequences flanking microsatellites. Nucleic Acids Res 19:1950.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao, X. and G. Kochert. 1992. Characterization and genetic mapping of a short, highly repeated, interspersed DNA sequence from rice (Oryza sativa L.). Mol Gen Genet 231:353–359.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • L. M. Kawchuk
    • 1
  • D. R. Lynch
    • 1
  • J. Thomas
    • 2
  • B. Penner
    • 3
  • D. Sillito
    • 1
  • F. Kulcsar
    • 1
  1. 1.Agriculture and Agri-Food CanadaResearch CenterLethbridgeCanada
  2. 2.Department of Biological SciencesUniversity of LethbridgeLethbridgeCanada
  3. 3.Brooks Diagnostics Ltd.BrooksCanada

Personalised recommendations