Lipids

, Volume 35, Issue 8, pp 911–918

Incorporation and metabolism of trans 20∶5 in endothelial cells. Effect on prostacyclin synthesis

  • C. Loï
  • J. M. Chardigny
  • C. Cordelet
  • L. Leclere
  • M. Genty
  • C. Ginies
  • J. P. Noel
  • J. L. Sébédio
Article

Abstract

To study the ability of long-chain trans fatty acids (FA) to be incorporated and metabolized into endothelial cells, bovine aortic endothelial cells were incubated with medium enriched eicosapentaenoic acid (EPA) bound to albumin (M2) or one of its geometrical isomers: 20∶5 5c,8c,11t,14c,17c(M3), 20∶5 5c,8c,11c,14c,17t(M4), or 20∶5 5c,8c,11t,14c,17t(M5). After 48 h of incubation, supernatant and cells were harvested and their lipids were analyzed, including prostacyclin synthesis. EPA and 22∶5n−3 of endothelial cells incubated with M2 were, respectively, three and two times higher than in control cells (incubated in M1, without any fatty acid added), whereas 22∶6n−3 increased only in the supernatant, suggesting its release after biosynthesis. However, 18∶2n−6 and 22∶4n−6 decreased (about 30%). Trans 20∶5 isomers represented 4.7, 3.9, and 5.2% of total phospholipid FA in endothelial cells incubated with M3, M4, and M5, respectively. They were elongated into trans 22∶5 and trans 24∶5, as revealed by gas chromatography-mass spectrometry and gas chromatography-Fourier transform infrared analysis. In cells incubated with M2, M3, M4, and M5, prostacyclin synthesis was inhibited by 49.0, 62.5, 60.5, and 72.0%, respectively. This effect may be due to less available arachidonic acid in the cells and to a competition between EPA isomers and AA at the level of cyclooxygenase pathway, as it was demonstrated that 20∶5 Δ17t was metabolized by this enzyme.

Abbreviations

AA

arachidonic acid

BAEC

bovine aortic endothelial cells

DHA

docosahexaenoic acid

DMOX

dimethyloxazoline derivative

DPA

docosapentaenoic acid

EPA

eicosapentaenoic acid

FA

fatty acids

FCS

fetal calf serum

FTIR

Fourier transform infrared

GC

gas chromatography

HPLC

high-performance liquid chromatography

NO

nitric oxide

PG

prostaglandin

PGI

prostacyclin

RV

retention volume

SFA

saturated fatty acid

18∶3 Δ15t

18∶3 9c,12c,15t

20∶5 Δ11t

20∶5 5c,8c,11t,14c,17c

20∶5

Δ17t, 20∶5 5c,8c,11c,14c,17t

20∶5 Δ11t

20∶5 5c,8c,11t,14c,17t

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackman, R.G., and Hooper, S.N. (1974) Linolenic Acid Artifacts from Deodorization of Oils, J. Am. Oil. Chem. Soc. 51, 42–49.Google Scholar
  2. 2.
    Sébédio, J.L., Grandgirard, A., and Prevost, J. (1988) Linoleic Acid Isomers in Heat Treated Sunflower Oils, J. Am. Oil Chem. Soc. 65, 362–366.Google Scholar
  3. 3.
    Grandgirard, A., Sébédio, J.L., and Fleury, J. (1984) Geometrical Isomerization of Linolenic Acid During Heat Treatment of Vegetable Oils, J. Am. Oil Chem. Soc. 61, 1563–1568.Google Scholar
  4. 4.
    Sébédio, J.L., Grandgirard, A., Septier, C., and Prevost, J. (1987) État d’Altération de Quelques Huiles de Friture Prélevées en Restauration, Rev. Fr. Corps Gras 1, 15–18.Google Scholar
  5. 5.
    Wolff, R.L., and Sébédio, J.L. (1991) Geometrical Isomers of Linolenic Acid in Low-Calorie Spreads Marketed in France, J. Am. Oil Chem. Soc. 68, 719–725.Google Scholar
  6. 6.
    Chardigny, J.M., Sébédio, J.L., and Berdeaux, O. (1996) Trans Polyunsaturated Fatty Acids: Occurrence and Nutritional Implications, Adv. Applied Lipid Res. 2, 1–33.Google Scholar
  7. 7.
    O’Keefe, S.F., Willey, V., and Gaskins, S. (1994) Geometrical Isomers of Essential Fatty Acids in Liquid Infant Formulas, Food Res. Int. 27, 7–13.CrossRefGoogle Scholar
  8. 8.
    Chardigny, J.M., Wolff, R.L., Mager, E., Bayard, C.C., Sébédio, J.L., Martine, L., and Ratnayake, W.M.N. (1996) Fatty Acid Composition of French Infant Formulas with Emphasis on the Content and Detailed Profile of Trans Fatty Acids, J. Am. Oil Chem. Soc. 73, 1595–1601.CrossRefGoogle Scholar
  9. 9.
    Ratnayake, W.M.N., Chardigny, J.M., Wolff, R.L., Bayard, C.C., Sébédio, J.L., and Martine, L. (1997) Essential Fatty Acids and Their Trans Geometrical Isomers in Powdered and Liquid Infant Formulas Sold in Canada, J. Pediatr. Gastroenterol. Nutr. 25, 400–407.PubMedCrossRefGoogle Scholar
  10. 10.
    Wolff, R.L. (1995) Recent Applications of Capillary Gas-Liquid Chromatography to Some Difficult Separations of Positional or Geometrical Isomers of Unsaturated Fatty Acids, in New Trends in Lipid and Lipoprotein Analysis (Sébédio, J.-L., and Perkins, E.G., eds.) pp. 147–180, AOCS Press, Champaign.Google Scholar
  11. 11.
    Chardigny, J.M., Wolff, R.L., Mager, E., Sébédio, J.L., Martine, L., and Juaneda, P. (1995) Trans Mono- and Polyunsaturated Fatty Acids in Human Milk, Eur. J. Clin. Nutr. 49, 523–531.PubMedGoogle Scholar
  12. 12.
    Sébédio, J.L., Mensink, R.P., Chardigny, J.M., Beaufrère, B., Vermunt, S., Armstrong, R.A., Christie, W.W., Niemelä, J., Hénon, G., and Riemersma, R.A. (1999) Nutritional and Health Impact of Trans-Polyunsaturated Fatty Acids in European Populations, the TRANSLinE Study. Design, Method, Baseline Characteristics and Adherence to Dietary Interventions, Eur. J. Clin. Nutr. 53, 1–10.CrossRefGoogle Scholar
  13. 13.
    Grandgirard, A., Piconneaux, A., Sébédio, J.L., O’Keefe, S.F., Semon, E., and Le Quéré, J.L. (1989) Occurrence of Geometrical Isomers of Eicosapentaenoic and Docosahexaenoic Acids in Liver Lipids of Rats Fed Heated Linseed Oil, Lipids 24, 799–804.PubMedGoogle Scholar
  14. 14.
    Chardigny, J.M., Sébédio, J.L., Grandgirard, A., Martine, L., Berdeaux, O., and Vatèle, J.M. (1996) Identification of Novel Trans Isomers of 20∶5n−3 in Liver Lipids of Rats Fed Heated Oil, Lipids 31, 165–168.PubMedCrossRefGoogle Scholar
  15. 15.
    Chardigny, J.M., Sébédio, J.L., Juaneda, P., Vatèle, J.M., and Grandgirard, A. (1993) Occurrence of n-3 Trans Polyunsaturated Fatty Acids in Human Platelets, Nutr. Res. 13, 1105–1111.CrossRefGoogle Scholar
  16. 16.
    Loï, C., Chardigny, J.M., Berdeaux, O., Vatèle, J.M., Poullain, D., Noël, J.P., and Sébédio, J.L. (1998) Effects of Three Trans Isomers of Eicosapentaenoic Acid on Rat Platelet Aggregation and Arachidonic Acid Metabolism, Thromb. Haemostasis. 80, 656–661.Google Scholar
  17. 17.
    De Angelis, E., Moss, S.H., and Pouton, C.W. (1996) Endothelial Cell Biology and Culture Methods for Drug Transport Studies, Adv. Drug Delivery Rev. 18, 193–218.CrossRefGoogle Scholar
  18. 18.
    Spector, A., Kaduce, T.L., Figard, P.H., Norton, K.C., Hoak, J.C., and Czervionke, R.L. (1983) Eicosapentaenoic Acid and Prostacyclin Production by Cultured Human Endothelial Cell, J. Lipid Res. 24, 1595–1604.PubMedGoogle Scholar
  19. 19.
    Garcia, M.C., Sprecher, H., and Rosenthal, M.D. (1990) Chain Elongation of Polyunsaturated Fatty Acids by Vascular Endothelial Cells: Studies with Arachidonate Analogues, Lipids 25, 211–215.PubMedGoogle Scholar
  20. 20.
    Rosenthal, M.D., Garcia, M.C., Jones, M.R., and Sprecher, H. (1991) Retroconversion and Δ4 Desaturation of Docosatetraenoate [22∶4(n−6)] and Docosapentaenoate [22∶5(n−3)] by Human Cells in Culture, Biochim. Biophys. Acta 1083, 29–36.PubMedGoogle Scholar
  21. 21.
    Okuda, Y., Kawashima, M., Sawada, T., Tsurumaru, K., Asano, M., Suzuki, S., Soma, M., Nakajima, T., and Yamashita, K. (1997) Eicosapentaenoic Acid Enhances Nitric Oxide Production by Cultured Human Endothelial Cells, Biochem. Biophys. Res. Commun. 232, 487–491.PubMedCrossRefGoogle Scholar
  22. 22.
    Shimokawa, H., and Vanhoutte, P.M. (1989) Dietary ω3 Fatty Acids and Endothelium-Dependent Relaxation in Porcine Coronary Artery, Am. J. Physiol. 256, H968-H973.PubMedGoogle Scholar
  23. 23.
    Hornstra, G., Christ-Hazelhof, E., Haddeman, E., Ten Hoor, F., and Nugteren, D.H. (1981) Fish Oil Feeding Lowers Thromboxane and Prostacyclin Production by Rat Platelets and Aorta and Does Not Result in the Formation of Prostaglandin I3, Prostaglandins 21, 727–738.PubMedCrossRefGoogle Scholar
  24. 24.
    Morita, I., Saito, Y., Chang, W.C., and Murota, S. (1983) Effects of Purified Eicosapentaenoic Acid on Arachidonic Acid Metabolism in Cultured Murine Aortic Smooth Muscle Cells, Vessel Walls and Platelets, Lipids 18, 42–49.PubMedGoogle Scholar
  25. 25.
    Hadjiagapiou, C., Kaduce, T.L., and Spector, A. (1986) Eicosapentaenoic Acid Utilization by Bovine Aortic Endothelial Cells: Effects on Prostacyclin Production, Biochim. Biophys. Acta 875, 369–381.PubMedGoogle Scholar
  26. 26.
    Raederstorff, D., and Maser, U. (1992) Influence of an Increased Intake of Linoleic Acid on the Incorporation of Dietary (n−3) Fatty Acids in Phopholipids and on Prostanoid Synthesis in Rat Tissues, Biochim. Biophys. Acta 1165, 194–200.PubMedGoogle Scholar
  27. 27.
    Kanayasu, T., Morita, I., Nakao-Hayashi, J., Asuwa, N., Fujisawa, C., Ishii, T., Ito, H., and Murota, S. (1991) Eicosapentaenoic Acid Inhibits Tube Formation of Vascular Endothelial Cells in Vitro, Lipids 26, 271–276.PubMedGoogle Scholar
  28. 28.
    Vatèle, J.M., Dong Doan, H., Chardigny, J.M., and Sébédio, J.L. (1994) Trans Polyunsaturated Fatty Acids. Part 1—Synthesis of Methyl (5Z,8Z,11Z,14Z,17E)-Eicosapentaenoate and Methyl (4Z,7Z,10Z,13Z,16Z,19E)-Docosahexaenoate, Chem. Phys. Lipids 74, 185–193.CrossRefGoogle Scholar
  29. 29.
    Vatèle, J.M., Dong Doan, H., Fenet, B., Chardigny, J.M., and Sébédio, J.L. (1995) Synthesis of Methyl (5Z,8Z,11E,17Z)-and (5Z,8Z,11E,14Z,17E)-Eicosapentaenoate (EPA Δ11t and EPA Δ11t,17t), Chem. Phys. Lipids 78, 65–70.CrossRefGoogle Scholar
  30. 30.
    Lamothe, F., Peyronel, D., Sergent, M., Iatrides, M.C., Artaud, J., and Phan-Tan-Luu, R. (1988) Saponification of Oils Rich in Polyunsaturated Fatty Acids: Optimization of Conditions by Response Surface Methodology, J. Am. Oil Chem. Soc. 65, 652–658.Google Scholar
  31. 31.
    Eynard, T., Poullain, D., Vatèle, J.M., Noël, J.P., Chardigny, J.M., and Sébédio, J.L. (1998) Synthesis of Methyl (5Z,8Z,11Z,14Z,17Z)-and (5Z,8Z,11Z,14Z,17E)-[18-14C]Eicosapentaenoate, J. Labelled Comp. Radiopharm. 41, 411–421.CrossRefGoogle Scholar
  32. 32.
    Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  33. 33.
    Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.PubMedGoogle Scholar
  34. 34.
    Kaluzny, M.A., Duncan, L.A., Merritt, M.V., and Epps, D.E. (1985) Rapid Separation of Lipid Classes in High Yield and Purity Using Bonded Phase Columns, J. Lipid Res. 26, 135–140.PubMedGoogle Scholar
  35. 35.
    Dobson, G., and Christie, W.W. (1996) Structural Analysis of Fatty Acids by Mass Spectrometry of Picolinyl Esters and Dimethyloxazoline Derivatives, Trends Anal. Chem. 15, 130–137.Google Scholar
  36. 36.
    Juanéda, P., Rocquelin, G., and Astorg, P.O. (1990) Separation and Quantification of Heart and Liver Phospholipid Classes by High-Performance Liquid Chromatography Using a New Light-Scattering Detector, Lipids 25, 756–759.PubMedGoogle Scholar
  37. 37.
    Powell, W.S. (1980) Rapid Extraction of Oxygenated Metabolites of Arachidonic Acid from Biological Samples Using Octadecylsilyl Silica, Prostaglandins 20, 947–957.PubMedCrossRefGoogle Scholar
  38. 38.
    Wohlfeil, E.R., and Campbell, W.B. (1997) 25-Hydroxycholesterol Enhances Eicosanoid Production in Cultured Bovine Coronary Artery Endothelial Cells by Increasing Prostaglandin G/H Synthase-2, Biochim. Biophys. Acta 1345, 109–120.PubMedGoogle Scholar
  39. 39.
    Alhenc-Gelas, F., Tsai, S.J., Callahan, K.S., Campbell, W.B., and Johnson, A. (1982) Stimulation of Prostaglandin Formation by Vasoactive Mediators in Cultured Human Endothelial Cells, Prostaglandins 24, 723–742.PubMedCrossRefGoogle Scholar
  40. 40.
    Salari, H., Braquet, P., and Borgeat, P. (1984) Comparative Effects of Indomethacin, Acetylenic Acids, 15-HETE, Nordihydroguaiaretic Acid and BW755C on the Metabolism of Arachidonic Acid in Human Leukocytes and Platelets, Prostaglandins Leukotrienes Med. 13, 53–60.CrossRefGoogle Scholar
  41. 41.
    Grandgirard, A., Piconneaux, A., Sebedio, J.L., and Julliard, F. (1998) Trans Isomers of Long-Chain n−3 Polyunsaturated Fatty Acids in Tissue Lipid Classes of Rats Fed with Heated Linseed Oil, Reprod. Nutr. Dev. 38, 17–29.PubMedGoogle Scholar
  42. 42.
    Rosenthal, M.D., and Hill, J.R. (1984) Human Vascular Endothelial Cells Synthesize and Release 24- and 26-Carbon Polyunsaturated Fatty Acids, Biochim. Biophys. Acta 795, 171–178.PubMedGoogle Scholar
  43. 43.
    Piconneaux, A. (1987) Etude de la Désaturation et de l’Elongation in Vivo d’Isomères Géométriques de l’Acide Linolénique, Ph.D. Thesis, University of Burgundy.Google Scholar
  44. 44.
    Achard, F., Benistant, C., and Lagarde, M. (1995) Interconversions and Distinct Metabolic Fate of Eicosapentaenoic, Docosapentaenoic and Docosahexaenoic Acids in Bovine Aortic Endothelial Cells, Biochim. Biophys. Acta 1255, 260–266.PubMedGoogle Scholar
  45. 45.
    Takayama, H., Gimbrone, M.A., and Schafer, A. (1987) Preferential Incorporation of Eicosanoid Precursor Fatty Acids into Human Umbilical Vein Endothelial Cell Phospholipids, Biochim. Biophys. Acta 922, 314–322.PubMedGoogle Scholar
  46. 46.
    Achard, F., Gilbert, M., Benistant, C., Benslama, S., Dewitt, D.L., Smith, W.L., and Lagarde, M. (1997) Eicosapentaenoic and Docosahexaenoic Acids Reduce PGH Synthase 1 Expression in Bovine Aortic Endothelial Cells, Biochem. Biophys. Res. Commun. 241, 513–518.PubMedCrossRefGoogle Scholar
  47. 47.
    Bénistant, C., Achard, F., Ben Slama, S., and Lagarde, M. (1996) Docosapentaenoic Acid (22∶5n−3): Metabolism and Effect on Prostacyclin Production in Endothelial Cells, Prostaglandins Leukotrienes Essent. Fatty Acids 55, 287–292.CrossRefGoogle Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  • C. Loï
    • 3
  • J. M. Chardigny
    • 3
  • C. Cordelet
    • 3
  • L. Leclere
    • 3
  • M. Genty
    • 3
  • C. Ginies
    • 1
  • J. P. Noel
    • 2
  • J. L. Sébédio
    • 3
  1. 1.Laboratoire de Recherche sur les ArômesINRADijonFrance
  2. 2.Service des Molécules MarquéesCEA-SaclayGifsur YvetteFrance
  3. 3.Unité de Nutrition LipidiqueINRADijon CedexFrance

Personalised recommendations