Advertisement

Journal of Biological Inorganic Chemistry

, Volume 5, Issue 3, pp 287–299 | Cite as

Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair

  • Roland K. O. SigelEmail author
  • Eva Freisinger
  • Bernhard Lippert
Original Article

Abstract

The hydrogen bonding properties of 1-methylcytosine (1-MeC) with the following guanine base derivatives have been studied in DMSO-d 6, applying concentration-dependent 1H NMR spectroscopy: 9-ethylguanine, 7,9-dimethylguanine (7,9-DimeGH+), and 7,8-dihydro-8-oxo-9-methylguanine (8-O-9-MeGH), as well as three 9-ethylguanine complexes carrying different Pt(II) moieties at the N7 position. The association constants K for the Watson-Crick pairing schemes are by a factor 2–3 higher in the cases of platinated guanine complexes compared to the Watson-Crick pair between 9-ethylguanine and 1-methylcytosine (K= 6.9 ± 1.3 M−1). Similar enhanced stabilities are observed for the pairs formed between 1-MeC and 7,9-DimeGH+ or 8-O-9-MeGH. The increase in N1H acidity of the guanine derivative upon modification at the N7 or C8 positions can be correlated with the association constants K; the result is a bell-shaped curve meaning that acidification initially stabilizes hydrogen bond formation up to a certain maximum; further acidification then leads to a destabilization. For two of the examples studied in solution, hydrogen bonding according to Watson-Crick between N7-platinated 9-ethylguanine and 1-methylcytosine has also been established by X-ray crystallography.

Key words

Watson-Crick Guanine/cytosine Platinum complex Stability Hydrogen bonding 

Abbreviations

C

cytosine

7,9-DimeG

7,9-dimethylguanine

7,9-DimeGH+

N1-protonated 7,9-dimethylguanine

9-EtA

9-ethyladenine

9-EtGH

9-ethylguanine

G

guanine

9-MeA

9-methyladenine

1-MeC

1-methylcytosine

1-MeT

N3-deprotonated 1-methylthymine

1-MeU

N3-deprotonated 1-methyluracil

m7G

7-methylguanine

8-O-9-MeGH

7,8-dihydro-8-oxo-9-methylguanine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn GM, Gait MJ (1990) Nucleic acids in chemistry and biology. IRL Press, OxfordGoogle Scholar
  2. 2.
    Reedijk J (1996) J Chem Soc Chem Commun 801–806Google Scholar
  3. 3.
    Takahara PM, Frederick A, Lippard SJ (1996) J Am Chem Soc 118: 12309–12321CrossRefGoogle Scholar
  4. 4.
    Kozelka J, Fouchet M-H, Chottard JC (1992) Eur J Biochem 205: 895–906PubMedCrossRefGoogle Scholar
  5. 5.
    Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB (1995) Science 270: 1842–1845PubMedCrossRefGoogle Scholar
  6. 6.
    Ano SO, Intini FP, Natile G, Marzilli LG (1998) J Am Chem Soc 120: 12017–12022CrossRefGoogle Scholar
  7. 7.
    Oivanen M, Lönnberg H, Zhou X, Chattopadhyaya J (1987) Tetrahedron 43: 1133–1140CrossRefGoogle Scholar
  8. 8.
    McCloskey JA, Nishimura S (1977) Acc Chem Res 10: 403–410CrossRefGoogle Scholar
  9. 9.
    Stryer L (1988) Biochemistry. Freeman, New York, p 720Google Scholar
  10. 10.
    Sussman JL, Holbrook SR, Wade Warrant R, Church GM, Kim S-H (1978) J Mol Biol 123: 607–630PubMedCrossRefGoogle Scholar
  11. 11.
    Pfleiderer W (1961) Liebigs Ann Chem 647: 167–173CrossRefGoogle Scholar
  12. 12.
    Yamagata Y, Fukumoto S, Hamada K, Fujiwara T, Tomita K (1983) Nucleic Acids Res 11: 6475–6486PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Metzger S, Lippert B (1996) Angew Chem Int Ed Engl 35: 1228–1229CrossRefGoogle Scholar
  14. 14.
    Lawley PD, Brookes P (1961) Nature 192: 1081–1082PubMedCrossRefGoogle Scholar
  15. 15.
    Newbold RF, Warren W, Medclaf ASC, Amos J (1980) Nature 283: 596–599PubMedCrossRefGoogle Scholar
  16. 16.
    Song B, Zhao J, Griesser R, Meiser C, Sigel H, Lippert B (1999) Chem Eur J 5: 2374–2387CrossRefGoogle Scholar
  17. 17.
    Faggiani R, Lock CJL, Lippert B (1980) J Am Chem Soc 102: 5418–5419CrossRefGoogle Scholar
  18. 18.
    Faggiani R, Lippert B, Lock CJL, Speranzini RA (1982) Inorg Chem 21: 3216–3225CrossRefGoogle Scholar
  19. 19.
    Lippert B (1981) J Am Chem Soc 103: 5691–5697CrossRefGoogle Scholar
  20. 20.
    Schröder G, Lippert B, Sabat M, Lock CJL, Faggiani R, Song B, Sigel H (1995) J Chem Soc Dalton Trans 3767–3775Google Scholar
  21. 21.
    Villani G, Tanguy Le Gac N, Hoffmann J-S (1999) In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. VHCA/Wiley-VCH, Z: urich/Weinheim, pp 135–157Google Scholar
  22. 22.
    Arpalahti J, Jokilammi A, Hakala H, Lönnberg H (1991) J Phys Org Chem 4: 301–309CrossRefGoogle Scholar
  23. 23.
    Choi H-K, Huang SK-S, Bau R (1988) Biochem Biophys Res Commun 156: 1125–1129PubMedCrossRefGoogle Scholar
  24. 24.
    Dieter-Wurm I, Sabat M, Lippert B (1992) J Am Chem Soc 114: 357–359CrossRefGoogle Scholar
  25. 25.
    Sigel RKO, Lippert B (1999) J Chem Soc Chem Commun 2167–2168Google Scholar
  26. 26.
    Sponer J, Burda JV, Sabat M, Leszczynski J, Hobza P (1998) J Phys Chem A 102: 5951–5957CrossRefGoogle Scholar
  27. 27.
    Burda JV, Sponer J, Leszczynski J, Hobza P (1997) J Phys Chem B 101: 9670–9677CrossRefGoogle Scholar
  28. 28.
    Anwander EHS, Probst MM, Rode BM (1990) Biopolymers 29: 757–769PubMedCrossRefGoogle Scholar
  29. 29.
    Lippert B (1997) J Chem Soc Dalton Trans 3971–3976Google Scholar
  30. 30.
    Steenken S (1989) Chem Rev 89: 503–520CrossRefGoogle Scholar
  31. 31.
    Lindahl T (1993) Nature 362: 709–715PubMedCrossRefGoogle Scholar
  32. 32.
    Kauffman GB, Cowan DO (1963) Inorg Synth 7: 239–245Google Scholar
  33. 33.
    Arpalahti J, Schöllhorn H, Thewalt U, Lippert B (1988) Inorg Chim Acta 153: 51–55CrossRefGoogle Scholar
  34. 34.
    Chow YM, Britton B (1975) Acta Crystallogr B31: 1934–1937CrossRefGoogle Scholar
  35. 35.
    Krüger G (1894) Hoppe Seyler’s Z Physiol Chem 18: 434–458Google Scholar
  36. 36.
    Kistenmacher TJ, Rossi M, Caradonna JP, Marzilli LG (1979) Adv Mol Relax Interact Processes 15: 119–133CrossRefGoogle Scholar
  37. 37.
    Frommer G, Schöllhorn H, Thewalt U, Lippert B (1990) Inorg Chem 29: 1417–1422CrossRefGoogle Scholar
  38. 38.
    Sigel RKO, Sabat M, Freisinger E, Mower A, Lippert B (1999) Inorg Chem 38: 1481–1490CrossRefGoogle Scholar
  39. 39.
    Sigel RKO, Thompson SM, Freisinger E, Lippert B (1999) J Chem Soc Chem Commun 19–20Google Scholar
  40. 40.
    Lumry R, Smitz EL, Glantz RR (1951) J Am Chem Soc 73: 4335–4340Google Scholar
  41. 41.
    Glasoe PK, Long FA (1960) J Phys Chem 64: 188–190CrossRefGoogle Scholar
  42. 42.
    Tribolet R, Sigel H (1987) Eur J Biochem 163: 353–363PubMedCrossRefGoogle Scholar
  43. 43.
    Martin RB (1963) Science 139: 1198–1203PubMedCrossRefGoogle Scholar
  44. 44.
    Otwinowsky Z, Minor W (1996) Methods Enzymol 276: 307–326CrossRefGoogle Scholar
  45. 45.
    Sheldrick GM (1990) Acta Crystallogr A46: 467–473CrossRefGoogle Scholar
  46. 46.
    Sheldrick GM (1990) SHELXTL-PLUS (VMS). Siemens Analytical X-Ray Instruments, Madison, WisGoogle Scholar
  47. 47.
    Sheldrick GM (1993) SHELXL-93; program for crystal structure refinement. University of Göttingen, GermanyGoogle Scholar
  48. 48.
    Sheldrick GM (1997) SHELXL97; program for the refinement of crystal structures. University of Göttingen, GermanyGoogle Scholar
  49. 49.
    Mitchell PR, Sigel H (1978) Eur J Biochem 88: 149–154PubMedCrossRefGoogle Scholar
  50. 50.
    Scheller HK, Hofstetter F, Mitchell PR, Prijs B, Sigel H (1981) J Am Chem Soc 103: 247–260CrossRefGoogle Scholar
  51. 51.
    Sigel H, Corfù NA (1996) Eur J Biochem 240: 508–517PubMedCrossRefGoogle Scholar
  52. 52.
    Mitchell PR (1979) J Chem Soc Dalton Trans 771–776Google Scholar
  53. 53.
    Strazewski P (1995) Helv Chim Acta 78: 1112–1143CrossRefGoogle Scholar
  54. 54.
    Sigel RKO, Freisinger E, Lippert B (1998) J Chem Soc Chem Commun 219–220Google Scholar
  55. 55.
    Newmark R, Cantor CR (1968) J Am Chem Soc 90: 5010–5017PubMedCrossRefGoogle Scholar
  56. 56.
    Peterson SB, Led JJ (1981) J Am Chem Soc 103: 5308–5313CrossRefGoogle Scholar
  57. 57.
    Schröder G, Sabat M, Baxter I, Kozelka J, Lippert B (1997) Inorg Chem 36: 490–493CrossRefGoogle Scholar
  58. 58.
    Sigel RKO, Freisinger E, Metzger S, Lippert B (1998) J Am Chem Soc 120: 12000–12007CrossRefGoogle Scholar
  59. 59.
    Schreiber A, Lüth MS, Erxleben A, Fusch EC, Lippert B (1996) J Am Chem Soc 118: 4124–4132CrossRefGoogle Scholar
  60. 60.
    Harris MG, Stewart R (1977) Can J Chem 55: 3807–3814CrossRefGoogle Scholar
  61. 61.
    Schöllhorn H, Raudaschl-Sieber G, Müller G, Thewalt U, Lippert B (1985) J Am Chem Soc 107: 5932–5937CrossRefGoogle Scholar
  62. 62.
    Lippert B, Raudaschl G, Lock CJL, Pilon P (1984) Inorg Chim Acta 93: 43–50CrossRefGoogle Scholar
  63. 63.
    Sherman SE, Gibson D, Wang AH-J, Lippard SJ (1985) Science 230: 412–417PubMedCrossRefGoogle Scholar
  64. 64.
    Lippert B (ed) (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. VHCA/Wiley-VCH, Zürich/ WeinheimGoogle Scholar
  65. 65.
    Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB (1995) Science 270: 1842–1845PubMedCrossRefGoogle Scholar
  66. 66.
    Paquet F, Pérez C, Leng M, Lancelot G, Malinge J-M (1996) J Biomol Struct Dyn 14: 67–77PubMedCrossRefGoogle Scholar
  67. 67.
    Herman F, Kozelka J, Stoven V, Guittet E, Girault J-P, Huynh-Dinh T, Igolen J, Lallemand J-Y, Chottard J-C (1990) Eur J Biochem 194: 119–133PubMedCrossRefGoogle Scholar
  68. 68.
    Fouchet M-H, Guittet E, Cognet JAH, Kozelka J, Gauthier C, Le Bret M, Zimmermann K, Chottard J-C (1997) JBIC 2: 83–92CrossRefGoogle Scholar
  69. 69.
    Zaludová R, Kleinwächter V, Brabec V (1996) Biophys Chem 60: 135–142PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2000

Authors and Affiliations

  • Roland K. O. Sigel
    • 1
    Email author
  • Eva Freisinger
    • 1
  • Bernhard Lippert
    • 1
  1. 1.Department of ChemistryUniversity of DortmundDortmundGermany

Personalised recommendations