Discrete & Computational Geometry

, Volume 17, Issue 3, pp 287–306 | Cite as

Inclusion-exclusion complexes for pseudodisk collections

  • H. Edelsbrunner
  • E. A. Ramos
Article

Abstract

Let B be a finite pseudodisk collection in the plane. By the principle of inclusion-exclusion, the area or any other measure of the union is
$$\mu \left( { \cup B} \right) = \sum\limits_{\sigma \in 2^B - \left\{ {\not 0} \right\}} {( - 1)^{card \sigma - 1} \mu \left( { \cap \sigma } \right)} .$$
.

We show the existence of a two-dimensional abstract simplicial complex, χ ⊆ 2B, so the above relation holds even if χ is substituted for 2B. In addition, χ can be embedded in ℝ2 so its underlying space is homotopy equivalent to int ⋃ B, and the frontier of χ is isomorphic to the nerve of the set of boundary contributions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Alexandrov. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung. Math. Ann. 98 (1928), 617–635.CrossRefMathSciNetGoogle Scholar
  2. 2.
    P. S. Alexandrov. Diskrete Räume. Mat. Sb. 2 (1937), 501–518.Google Scholar
  3. 3.
    A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids. Cambridge University Press, Cambridge, 1993.Google Scholar
  4. 4.
    B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR Otdel. Mat. Estestve. Nauk 7 (1934), 793–800.Google Scholar
  5. 5.
    H. Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom. 13 (1995), 415–440.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    I. Fári. On straight line representation of planar graphs. Ada Sci. Math. (Szeged) 11 (1948), 229–233.Google Scholar
  7. 7.
    J. E. Goodman and R. Pollack. Upper bounds for configurations and polytopes in ℝd. Discrete Comput. Geom. 1 (1986), 219–227.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Grünbaum. Arrangements and Spreads. American Mathematical Society, Providence, Rhode Island, 1972.Google Scholar
  9. 9.
    D. Haussler and E. Welzl. Epsilon nets and simplex range queries. Discrete Comput. Geom. 2 (1987), 127–151.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Deutsch. Math.-Verein. 32 (1923), 175–176.MATHGoogle Scholar
  11. 11.
    K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1 (1986), 59–71.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    K. W. Kratky. The area of intersection of n equal circular disks. J. Phys. A 11 (1978), 1017–1024.MathSciNetGoogle Scholar
  13. 13.
    J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City, California, 1984.Google Scholar
  14. 14.
    D. Q. Naiman and H. P. Wynn. Inclusion-exclusion-Bonferroni identities and inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist. 20 (1992), 43–76.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. In Discrete and Computational Geometry: Papers from the DJMACS Special Year, eds. J. E. Goodman, R. Pollack, and W. Steiger, DIMACS Series in Discrete Mathematics, Vol. 6, 1991, pp. 309–349.MathSciNetGoogle Scholar
  16. 16.
    V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 (1971), 264–280.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • H. Edelsbrunner
    • 1
  • E. A. Ramos
    • 1
  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations