Journal of Molecular Evolution

, Volume 44, Issue 1, pp 43–56 | Cite as

Of Worms and Men: An Evolutionary Perspective on the Fibroblast Growth Factor (FGF) and FGF Receptor Families

  • François  Coulier
  • Pierre  Pontarotti
  • Régine  Roubin
  • Helge  Hartung
  • Mitchell  Goldfarb
  • Daniel  Birnbaum


FGFs (fibroblast growth factors) play major roles in a number of developmental processes. Recent studies of several human disorders, and concurrent analysis of gene knock-out and properties of the corresponding recombinant proteins have shown that FGFs and their receptors are prominently involved in the development of the skeletal system in mammals. We have compared the sequences of the nine known mammalian FGFs, FGFs from other vertebrates, and three additional sequences that we extracted from existing databases: two human FGF sequences that we tentatively designated FGF10 and FGF11, and an FGF sequence from Cænorhabditis elegans. Similarly, we have compared the sequences of the four FGF receptor paralogs found in chordates with four non-chordate FGF receptors, including one recently identified in C. elegans. The comparison of FGF and FGF receptor sequences in vertebrates and nonvertebrates shows that the FGF and FGF receptor families have evolved through phases of gene duplications, one of which may have coincided with the emergence of vertebrates, in relation with their new system of body scaffold.

Key words: FGF — FGF receptor — Phylogeny — Vertebrate — Invertebrate — Gene duplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adélaïde J, Mattéi M, Marics I, Raybaud F, Planche J, deLapeyrière O, Birnbaum D (1988) Chromosomal localization of the HST oncogene and its co-amplification with the INT2 oncogene in a human melanoma. Oncogene 2:413–416PubMedGoogle Scholar
  2. Berks M, The C. elegans Genome Mapping and Sequencing Consortium (1995) The C. elegans genome sequencing project. Genome Res 5:99–104PubMedCrossRefGoogle Scholar
  3. Brody LC, Abel KJ, Castilla LH, Couch FJ, McKinley DR, Yin G, Ho PP, Merajver S, Chandrasekharappa SC, Xu J, Cole JL, Struewing JP, Valdes JM, Collins FS, Weber BL (1995) Construction of a transcription map surrounding the BRCA1 locus of human chromosome 17. Genomics 25:238–247PubMedCrossRefGoogle Scholar
  4. Casey G, Smith R, McGillivray D, Peters G, Dickson C (1986) Characterization and chromosome assignment of the human homolog of int-2, a potential proto-oncogene. Mol Cell Biol 6:502–510PubMedCentralPubMedGoogle Scholar
  5. Coates MI (1995) Fish fins or tetrapod limbs—a simple twist of fate? Curr Biol 5:844–848PubMedCrossRefGoogle Scholar
  6. Coulier F, Ollendorff V, Marics I, Rosnet O, Batoz M, Planche J, Marchetto S, Pébusque M, deLapeyrière O, Birnbaum D (1991) The FGF6 gene within the FGF multigene family. Ann NY Acad Sci 638:53–61PubMedCrossRefGoogle Scholar
  7. Coulier F, Pizette S, Ollendorff V, deLapeyrière O, Birnbaum D (1994) The human and mouse Fibroblast Growth Factor 6 (FGF6) genes and their products: possible implication in muscle development. Prog Growth Factor Res 5:1–14PubMedCrossRefGoogle Scholar
  8. Cox R, Copeland N, Jenkins N, Lehrach H (1991) Interspersed repetitive element polymerase chain reaction product mapping using a mouse interspecific backcross. Genomics 10:375–384PubMedCrossRefGoogle Scholar
  9. deLapeyrière O, Rosnet O, Benharroch D, Raybaud F, Marchetto S, Planche J, Galland F, Mattéi M, Copeland N, Jenkins N, Coulier F, Birnbaum D (1990) Structure, chromosome mapping and expression of the murine FGF6 gene. Oncogene 5:823–831Google Scholar
  10. DeVore DL, Horvitz HR, Stern MJ (1995) {aAn FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites}. Cell 83:611–620PubMedCrossRefGoogle Scholar
  11. Emori Y, Yasuoka A, Saigo K (1992) Identification of four FGF receptor genes in Medaka fish (Oryzias latipes). FEBS 314:176–178CrossRefGoogle Scholar
  12. Eriksson AE, Cousens LS, Weaver LH, Matthews BW (1991) Threedimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci USA 88:3441–3445PubMedCentralPubMedCrossRefGoogle Scholar
  13. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120PubMedCrossRefGoogle Scholar
  14. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249PubMedCrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Felsenstein J (1989) PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  17. Gimenez-Gallego G, Rodkey J, Bennett C, Rios-Candelore M, DiSalvo J, Thomas K (1985) Brain-derived acidic fibroblast growth factor: complete amino acid sequence and homologies. Science 230:13851388CrossRefGoogle Scholar
  18. Grass S, Arnold H, Braun T (1996) Alterations in somite patterning of Myf 5-deficient mice; a possible role for FGF-4 and FGF-6. Development 122:141–150PubMedGoogle Scholar
  19. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domain. Science 241:42–52PubMedCrossRefGoogle Scholar
  20. Higgins DG, Bleasby AJ, Fuchs R (1991) Clustal V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191Google Scholar
  21. Hillier L, Aaronson J, Marra M, Soares M, Lennon G, Blevins R, Bonaldo M, Chiapelli B, Chissoe S, Clark N, Dubuque T, Favello A, Parsons J, Prange C, Rifkin L, Rohlfmg T, Tan F, Trevaskis E, Vaudin M, Wohldman P, Waterston R, Williamson A, Elliston K, Wilson R (1996) Generation and preliminary analysis of the first 100,000 human expressed sequence tags from the WashU-Merck EST project. Nature, in pressGoogle Scholar
  22. Hodgkin J, Plasterk RHA, Waterston RH (1995) The nematode Caenorhabditis elegans and its genome. Science 270:410–414PubMedCrossRefGoogle Scholar
  23. Holland PWH, Garcia-Fernàndez J, Williams NA, Sidow A (1994) Gene duplications and the origin of vertebrate development. In: Akam M, Holland P, Ingham P, Wray G (eds) The evolution of developmental mechanisms. The Company of Biologists, Cambridge, pp 125–133Google Scholar
  24. Isaacs HV, Tannahill D, Slack JMW (1992) Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114:711–720PubMedGoogle Scholar
  25. Jaye M, Howk R, Burgess W, Ricca GA, Chiu I, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN (1986) Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233:541–545PubMedCrossRefGoogle Scholar
  26. Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1–41PubMedCrossRefGoogle Scholar
  27. Johnson RL, Riddle RD, Tabin CJ (1994) Mechanisms of limb patterning. Curr Opin Genet Dev 4:535–542PubMedCrossRefGoogle Scholar
  28. Kelley MJ, Pech M, Seuanez HN, Rubin JS, O’Brien SJ, Aaronson SA (1992) Emergence of keratinocyte growth factor multigene family during the great ape radiation. Proc Natl Acad Sci USA 89:92879291Google Scholar
  29. Klämbt C, Glazer L, Shilo BZ (1992) Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 6:1668–1678PubMedCrossRefGoogle Scholar
  30. Lafage-Pochitaloff M, Galland F, Simonetti J, Prats H, Mattéi M, Birnbaum D (1990) The human basic fibroblast growth factor gene is located on the long arm of chromosome 4 at bands q26-q27. Oncogene Res 5:241–244PubMedGoogle Scholar
  31. Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19PubMedCrossRefGoogle Scholar
  32. Marics I, Adelaide J, Raybaud F, Mattéi M, Coulier F, Planche J, deLapeyrière O, Birnbaum D (1989) Characterization of the HST-related FGF6 gene, a new member of the fibroblast growth factor gene family. Oncogene 4:335–340PubMedGoogle Scholar
  33. Mason I (1994) The ins and outs of fibroblast growth factors. Cell 78:547–552PubMedCrossRefGoogle Scholar
  34. Mattéi M, Pébusque M, Birnbaum D (1992) Chromosomal localizations of mouse Fgf2 and Fgf5 genes. Mamm Genome 2:135–137PubMedCrossRefGoogle Scholar
  35. Mattéi M, deLapeyrière O, Bresnick J, Dickson C, Birnbaum D, Mason I (1995a) Mouse Fgf7 (Fibroblast growth factor 7) and Fgf8 (Fibroblast growth factor 8) genes map to chromosome 2 and chromosome 19, respectively. Mamm Genome 6:196–197PubMedCrossRefGoogle Scholar
  36. Mattéi M, Penault-Llorca F, Coulier F, Birnbaum D (1995b) The human FGF9 gene maps to chromosomal region 13g11-12. Genomics 29:811–812PubMedCrossRefGoogle Scholar
  37. Muenke M, Schell U (1995) Fibroblast-growth factor receptor mutations in human skeletal disorders. Trends Genet 11:308–313PubMedCrossRefGoogle Scholar
  38. Mulvihill JJ (1995) Craniofacial syndromes: no such thing as a single gene disease. Nat Genet 9:101–103PubMedCrossRefGoogle Scholar
  39. Nelson CE, Tabin C (1995) Footnote on limb evolution. Nature 375: 630–631PubMedCrossRefGoogle Scholar
  40. Nguyen C, Roux D, Mattéi M, deLapeyrière O, Goldfarb M, Birnbaum D, Jordan BR (1988) The FGF-related oncogenes hst and int. 2, and the bcl.2 locus are contained within one megabase in band q13 of chromosome 11, while the fgf.5 oncogene maps to 4q21. Oncogene 3:703–708PubMedGoogle Scholar
  41. Niswander L, Jeffrey S, Martin GR, Tickle C (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371:609–612PubMedCrossRefGoogle Scholar
  42. Peters G, Kozak C, Dickson C (1984) Mouse mammary tumor virus integration regions int-1 and int-2 map on different mouse chromosomes. Mol Cell Biol 4:375–378PubMedCentralPubMedGoogle Scholar
  43. Peters G, Brookes S, Smith R, Placzek M, Dickson C (1989) The mouse homolog of the hstlk-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci USA 86:5678–5682PubMedCentralPubMedCrossRefGoogle Scholar
  44. Presta M, Statuto M, Isacchi A, Caccia P, Pozzi A, Gualandris A, Rusnati M, Bergonzoni L, Sarmientos P (1992) Structure-function relationship of basic fibroblast growth factor: site-directed mutagenesis of a putative heparin-binding and receptor-binding region. Biochem Biophys Res Commun 185:1098–1107PubMedCrossRefGoogle Scholar
  45. Pulido D, Campuzano S, Koda T, Modolell J, Barbacid M (1992) Dtrk a Drosophila gene related to the trk family of neurotrophin receptors, encodes a novel class of neural cell adhesion molecule. EMBO J 11:391–404PubMedCentralPubMedGoogle Scholar
  46. Ruddle FH, Bentley KL, Murtha MT, Risch N (1994) Gene loss and gain in the evolution of the vertebrate. In: Akam M, Holland P, Ingham P, Wray G (eds) The evolution of developmental mechanisms. The Company of Biologists, Cambridge, pp 155–161Google Scholar
  47. Shishido E, Higashijima S, Emori Y, Saigo K (1993) Two FGFreceptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117:751–761PubMedGoogle Scholar
  48. Shiurba R, Jing N, Sakakura T, Goldsave SF (1991) Nuclear translocation of fibroblast growth factor during Xenopus mesoderm induction. Development 113:487–493PubMedGoogle Scholar
  49. Sordino P, van der Hoeven F, Duboule D (1995) Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375:678681CrossRefGoogle Scholar
  50. Tanaka EM, Gann AAF (1995) The budding role of FGF. Curr Biol 5:594–597PubMedCrossRefGoogle Scholar
  51. Thisse B, Thisse C, Weston JA (1995) Novel FGF receptor (Z-FGFR4) is dynamically expressed in mesoderm and neuroectoderm during early zebrafish embryogenesis. Dev Dyn 203:377–391PubMedCrossRefGoogle Scholar
  52. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tickle C (1995) Vertebrate limb development. Curr Opin Genet Dev 5:478–484PubMedCrossRefGoogle Scholar
  54. White RA, Dowler LL, Angeloni SV, Pasztor LM, MacArthur CA (1995) Assignment of FGF8 to human chromosome 10g25-q26: mutations in FGF8 may be responsible for some types of acrocephalosyndactyly linked to this region. Genomics 30:109–111PubMedCrossRefGoogle Scholar
  55. Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5:500507CrossRefGoogle Scholar
  56. Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, Coulson A, Craxton M, Dear S, Du Z, Durbin R, Favello A, Fraser A, Fulton L, Gardner A, Green P, Hawkins T, Hillier L, Jier M, Johnston L, Jones M, Kershaw J, Kirsten J, Laisster N, Latreille P, Lightning J, Lloyd C, Mortimore B, O’Callaghan M, Parsons J, Percy C, Rifken L, Roopra A, Saunders D, Shownkeen R, Sims M, Smaldon N, Smith A, Smith M, Sonnhammer E, Staden R, Sulston J, Thierry-Mieg J, Thomas K, Vaudin M, Vaughan K, Waterston R, Watson A, Weinstock L, Wilkinson-Sproat J, Wohldman P (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368:32–38PubMedCrossRefGoogle Scholar
  57. Yamaguchi TP, Rossant J (1995) Fibroblast growth factors in mammalian development. Curr Biol 5:485–491CrossRefGoogle Scholar
  58. Zhang J, Cousens LS, Barr PJ, Sprang SR (1991) Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin lb. Proc Natl Acad Sci USA 88:3446–3450PubMedCentralPubMedCrossRefGoogle Scholar
  59. Zhu X, Komiya H, Chirino A, Faham S, Fox GM, Arakawa T, Hsu BT, Rees DC (1991) Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251:90–93PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1997

Authors and Affiliations

  • François  Coulier
    • 1
  • Pierre  Pontarotti
    • 1
  • Régine  Roubin
    • 1
  • Helge  Hartung
    • 2
  • Mitchell  Goldfarb
    • 2
  • Daniel  Birnbaum
    • 1
  1. 1.Laboratoire d'Oncologie Moléculaire, U.119 INSERM, 27 Bd. Leï Roure, 13009 Marseille, FranceFR
  2. 2.Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029-6579, USAUS

Personalised recommendations