Advertisement

Journal of Molecular Evolution

, Volume 44, Issue 1, pp 112–119 | Cite as

Estimating the Transition/Transversion Ratio from Independent Pairwise Comparisons with an Assumed Phylogeny

  • Andy  Purvis
  • Lindell  Bromham
Article

Abstract.

A method is presented for estimating the transition/transversion ratio (TI/TV), based on phylogenetically independent comparisons. TI/TV is a parameter of some models used in phylogeny estimation intended to reflect the fact that nucleotide substitutions are not all equally likely. Previous attempts to estimate TI/TV have commonly faced three problems: (1) few taxa; (2) nonindependence among pairwise comparisons; and (3) multiple hits make the apparent TI/TV between two sequences decrease over time since their divergence, giving a misleading impression of relative substitution probabilities. We have made use of the time dependency, modeling how the observed TI/TV changes over time and extrapolating to estimate the ``instantaneous'' TI/TV—the relevant parameter for phylogenetic inference. To illustrate our method, TI/TV was estimated for two mammalian mitochondrial genes. For 26 pairs of cytochrome b sequences, the estimate of TI/TV was 5.5; 16 pairs of 12s rRNA yielded an estimate of 9.5. These estimates are higher than those given by the maximum likelihood method and than those obtained by averaging all possible pairwise comparisons (with or without a two-parameter correction for multiple substitutions). We discuss strengths, weaknesses, and further uses of our method.

Key words: Transition/transversion ratio — Independent comparisons — Phylogeny — Cytochrome b — 12s rRNA — Mammals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci USA 89:3972–3976PubMedCentralPubMedCrossRefGoogle Scholar
  2. Archer M (1984) The Australian marsupial radiation. In: Archer M, Clayton G (eds) Vertebrate zoogeography and evolution in Australia. Hesperian Press, Perth, pp 633–809Google Scholar
  3. Baverstock PR, Archer M, Adams M, Richardson BJ (1982) Genetic relationships among 32 species of Australian dasyurid marsupials. In: Arch M (ed) Carnivorous marsupials. Royal Zoological Society of New South Wales, Sydney, pp 641–650Google Scholar
  4. Bromham LD, Rambaut AE, Harvey PH (1996) Determinants of rate variation in mammalian DNA sequence evolution. J Mol Evol 43 (in press)Google Scholar
  5. Brownell E (1983) DNA/DNA hybridization studies of muroid rodents: symmetry and rates of molecular evolution. Evolution 37:1034–1051CrossRefGoogle Scholar
  6. Burt A (1989) Comparative methods using phylogenetically independent contrasts. Oxf Surv Evol Biol 6:33–53Google Scholar
  7. Butler PM (1988) Phylogeny of the insectivores. In: Benton MJ (ed) The phylogeny and classification of tetrapods, volume 2: mammals. Clarendon Press, Oxford, pp 117–142Google Scholar
  8. Carroll RC (1989) Vertebrate paleontology and evolution. WH Freeman, New YorkGoogle Scholar
  9. Catzeflis FM, Nevo E, Ahlquist JE, Sibley CG (1989) Relationships of the chromosomal species in the Eurasian mole rates of the Spalax ehrenbergi group as determined by DNA-DNA hybridization, and an estimate of the spalacid-murid divergence time. J Mol Evol 29:223–232PubMedCrossRefGoogle Scholar
  10. Catzeflis FM, Aguilar J-P, Jaeger J-J (1992) Muroid rodents: phylogeny and evolution. Trends Ecol Evol 7:122–126PubMedCrossRefGoogle Scholar
  11. Corbet GB, Hill JE (1991) A world list of mammalian species. Oxford University Press, OxfordGoogle Scholar
  12. Eisenberg JF (1981) The mammalian radiations. The Athlone Press, LondonGoogle Scholar
  13. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  14. Felsenstein J (1988) Phylogenies from molecular data: inference and reliability. Annu Rev Genet 22:521–565PubMedCrossRefGoogle Scholar
  15. Felsenstein J (1992) Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. Genet Res Camb 59:139–147CrossRefGoogle Scholar
  16. Felsenstein J (1993) PHYLIP. Version 3.5c. University of Washington, SeattleGoogle Scholar
  17. Forstén A (1992) Mitochondrial-DNA time-table and the evolution of Equus: comparison of molecular and paleontological evidence. Ann Zool Fennici 28:301–309Google Scholar
  18. Garland TJ, Janis CM (1993) Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? J Zool Lond 229:133–151CrossRefGoogle Scholar
  19. Garland TJ, Dickerman AW, Janis CW, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292CrossRefGoogle Scholar
  20. Georgiadis NJ, Kat PW, Oketch H, Patton J (1990) Allozyme divergence within the Bovidae. Evolution 44:2135–2149CrossRefGoogle Scholar
  21. Geraads D (1992) Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla). Zool J Linn Soc 104:193–207CrossRefGoogle Scholar
  22. Hafner DJ (1984) Evolutionary relationships of the Nearctic Sciuridae. In: Murie JO, Michener GR (eds) The biology of ground-dwelling squirrels: annual cycles, behavioural ecology, and sociality. pp 3–23Google Scholar
  23. Hafner MS, Sudman PD, Villablanca FX, Spradling TA, Demastes JW, Nadler SA (1994) Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265:1087–1090PubMedCrossRefGoogle Scholar
  24. Hartl GB, Göltenboth R, Grillitsch M, Willing R (1988) On the biochemical systematics of the Bovini. Biochem Syst Ecol 16:575–579CrossRefGoogle Scholar
  25. Hartl GB, Burger H, Willing R, Suchentrunk F (1990) On the biochemical systematics of the Caprini and Rupicaprini. Biochem Syst Ecol 18:175–182CrossRefGoogle Scholar
  26. Honeycutt RL, Williams SL (1982) Genic differentiation in pocket gophers of the genus Pappogeomys with comments on intergeneric relationships in the subfamily Geomyinae. J Mamm 63:208–217CrossRefGoogle Scholar
  27. Janis CM (1988) New ideas in ungulate phylogeny and evolution. Trends Ecol Evol 3:291–297PubMedCrossRefGoogle Scholar
  28. Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  29. Kingdon J (1982) East African mammals: an atlas of evolution. Academic Press, LondonGoogle Scholar
  30. Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis. The Pennsylvania State University, University ParkGoogle Scholar
  31. Li WH, Gouy M, Sharp PM, O’hUigin C, Yang YY (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla and Carnivora and molecular clocks. PNAS 87:6703–6707PubMedCentralPubMedCrossRefGoogle Scholar
  32. Macdonald DW (ed) (1984) The encyclopaedia of mammals. Unwin Hyman, LondonGoogle Scholar
  33. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125PubMedCrossRefGoogle Scholar
  34. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) Fast DNAml a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:4148Google Scholar
  35. Pagel MD, Harvey PH (1992) On solving the correct problem: wishing does not make it so. J Theor Biol 156:425–430CrossRefGoogle Scholar
  36. Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond Biol 348:405–421PubMedCrossRefGoogle Scholar
  37. Randi E, Fusco G, Lorenzini R, Tosco S, Tosi G (1991) Allozyme divergence and phylogenetic relationships among Capra, Ovis and Rupicapra (Artiodactyla, Bovidae). Heredity 67:281–286PubMedCrossRefGoogle Scholar
  38. Reeder TW (1995) Phylogenetic relationships among phrynosomatid lizards as inferred from mitochrondrial ribosomal DNA sequences: substitutional bias and information content of transitions relative to transversions. Mol Phylogenet Evol 4:203–222PubMedCrossRefGoogle Scholar
  39. Reig OA, Kirsch JAW, Marshall LG (1987) Systematic relationships of the living and Neocenozoic American “opossum-like” marsupials (suborder Didelphimorphia), with comments on the classification of these and of the Cretaceous and Paleogene New World and European metatherians. In: Archer M (ed) Possums and opossums: studies in evolution. Surrey Beatty and the Royal Zoological Society of New South Wales, Sydney, pp 1–89Google Scholar
  40. Sarich VM (1986) Rodent macromolecular systematics. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents; a multidisciplinary analysis. pp 423–452Google Scholar
  41. She JX, Bonhomme F, Boursot P, Thaler L, Catzeflis F (1990) Molecular phylogenies in the genus Mus: comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. Biol J Linn Soc 41:83–103CrossRefGoogle Scholar
  42. Stanley HF, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc R Soc Lond [Biol] 256:1–6CrossRefGoogle Scholar
  43. Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol Evol 11:158–163PubMedCrossRefGoogle Scholar
  44. Wayne RK, Benveniste RE, Janczewski DN, O’Brien SJ (1989) Molecular and biochemical evolution of the Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Chapman and Hall, London, pp 465–494CrossRefGoogle Scholar
  45. Wheeler WC, Honeycutt RL (1988) Paired sequence difference in ribosomal RNAs evolutionary and phylogenetic implications. Mol Biol Evol 5:90–96PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1997

Authors and Affiliations

  • Andy  Purvis
    • 1
  • Lindell  Bromham
    • 1
  1. 1.Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United KingdomGB

Personalised recommendations