Inventiones mathematicae

, Volume 142, Issue 1, pp 1–15 | Cite as

Projective contact manifolds

  • Stefan Kebekus
  • Thomas Peternell
  • Andrew J. Sommese
  • Jarosław A. Wiśniewski

Abstract.

The present work is concerned with the study of complex projective manifolds X which carry a complex contact structure. In the first part of the paper we show that if K X is not nef, then either X is Fano and b 2(X)=1, or X is of the form ℙ(T Y ), where Y is a projective manifold. In the second part of the paper we consider contact manifolds where K X is nef.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stefan Kebekus
    • 1
  • Thomas Peternell
    • 2
  • Andrew J. Sommese
    • 3
  • Jarosław A. Wiśniewski
    • 4
  1. 1.Lehrstuhl Mathematik VIII, Universität Bayreuth, 95440 Bayreuth, Germany¶(e-mail: stefan.kebekus@uni-bayreuth.de)DE
  2. 2.Lehrstuhl Mathematik I, Universität Bayreuth, 95440 Bayreuth, Germany¶(e-mail: thomas.peternell@uni-bayreuth.de)DE
  3. 3.Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA¶(e-mail: sommese@nd.edu)US
  4. 4.Instytut Matematyki UW, Banacha 2, 02-097 Warszawa, Poland¶(e-mail: jarekw@mimuw.edu.pl)PL

Personalised recommendations