Mathematische Zeitschrift

, Volume 223, Issue 3, pp 473–481

Embedding homology equivalent 3-manifolds in 4-space

  • Jonathan A. Hillman


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crisp, J.S., Hillman, J.A.: Embedding Seifert fibred 3-manifolds andSol 3-manifolds in 4-space preprint, The University of Sydney (1995)Google Scholar
  2. 2.
    Farrell, F.T., Jones, L.P.: The surgeryL-groups of poly-(finite or cyclic) groups, Invent. Math.91, 559–586 (1988)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fintushel, R., Stern, R.:SO(3)-connections and the topology of 4-manifolds, J. Diff. Geom.30, 523–539 (1984)MathSciNetGoogle Scholar
  4. 4.
    Freedman, M.H., Quinn, F.: Topology of 4-Manifolds, Princeton University Press, Princeton (1990)Google Scholar
  5. 5.
    Gabai, D.: Foliations and the topology of 3-manifolds III, J. Diff. Geom.26, 479–536 (1987)MATHMathSciNetGoogle Scholar
  6. 6.
    Gilmer, P., Livingston, C.: On embedding 3-manifolds in 4-space, Topology22, 241–252 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hantzsche, W.: Einlagerung von Mannigfaltigkeiten in euklidische Räume, Math. Z.43, 38–58 (1938)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hillman, J.A.: The Algebraic Characterization of Geometric 4-Manifolds, London Mathematical Society Lecture Note Series198 Cambridge University Press, Cambridge -London - New York - Melbourne (1994)MATHCrossRefGoogle Scholar
  9. 9.
    Kawauchi, A., Kojima, S.: Algebraic classification of linking pairings on 3-manifolds, Math. Ann.253, 29–42 (1980)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kuga, K.: Representing homology classes ofS 2×S 2, Topology23, 133–137 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Price, T.M.: Homeomorphisms of quaternion space and projective planes in 4-space, J. Austral. Math. Soc.23, 112–128 (1977)MATHCrossRefGoogle Scholar
  12. 12.
    Rolfsen, D.: Knots and Links, Publish or Perish, Inc. (1976)Google Scholar
  13. 13.
    Wall, C.T.C.: All 3-manifolds embed in 5-space, Bull. Amer. Math. Soc.71, 569–572 (1965)Google Scholar
  14. 14.
    Wall, C.T.C.: Poincaré complexes: I, Ann. Math.86, 213–245 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Jonathan A. Hillman
    • 1
  1. 1.School of Mathematics and StatisticsThe University of SydneySydneyAustralia

Personalised recommendations