Mathematische Zeitschrift

, Volume 223, Issue 3, pp 367–385 | Cite as

Reduced models of Albert algebras



We prove existence and uniqueness of reduced models for arbitrary Albert algebras and relate them to the Tits process. This relationship yields explicit noncohomological realizations of the invariants mod 2 due to Serre and Rost. We also construct nontrivial examples of Albert division algebras with nonvanishing invariants mod 2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, A.A.: Symmetric and alternate matrices over an arbitrary field. I. Trans. Amer. Math. Soc.43, 386–436 (1938)MATHGoogle Scholar
  2. 2.
    Albert, A.A.: On exceptional Jordan division algebras. Pacific J. Math.15, 377–404 (1965)MATHMathSciNetGoogle Scholar
  3. 3.
    Albert, A.A., Jacobson, N.: On reduced exceptional simple Jordan algebras. Ann. of Math. (2)66, 400–417 (1957)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ferrar, J.C.: Generic splitting fields for composition algebras. Trans. Amer. Math. Soc.128, 506–514 (1967)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jacobson, N.: Composition algebras and their automorphism. Rend. Cir. Mat. di Palermo (II),7, 55–80 (1958)MATHCrossRefGoogle Scholar
  6. 6.
    Jacobson, N.: Structure and representations of Jordan algebras. Amer. Math. Coll. Publ.39, Providence R I, 1968Google Scholar
  7. 7.
    Knus, M.A., Parimala, R., Sridharan, R.: On compositions and triality. J. reine angew. Math.457, 45–70 (1994)MATHMathSciNetGoogle Scholar
  8. 8.
    Loos, O.: Tensor products and discriminants of unital quadratic forms over commutative rings. Monatsh. Math.122, 45–98 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    McCrimmon, K.: The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. Trans. Amer. Math. Soc.139, 495–510 (1969)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Petersson, H.P.: Reduced simple Jordan algebras of degree 3 over a field with a discrete valuation. Archiv Math.25, 593–597 (1974)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Petersson, H.P.: Exceptional simple Jordan algebras of generic matrices. PreprintGoogle Scholar
  12. 12.
    Petersson, H.P., Racine, M.L.: Springer forms and the first Tits construction of exceptional Jordan division algebras. Manuscripta math.45, 249–272 (1984)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Petersson, H.P., Racine, M.L.: Cubic subfields of exceptional simple Jordan algebras. Proc. Amer. Math. Soc.91(1), 31–36 (1984)MATHMathSciNetGoogle Scholar
  14. 14.
    Petersson, H.P., Racine, M.L.: The toral Tits process of Jordan algebras. Abh. Math. Sem. Univ. Hamburg54, 251–256 (1984)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Petersson, H.P., Racine, M.L.: Jordan Algebras of degree 3 and the Tits process.. J. Algebra98(1), 211–243 (1986)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Petersson, H.P., Racine, M.L.: Classification of algebras arising from the Tits process. J. Algebra98, 244–279 (1986)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Petersson, H.P., Racine, M.L.: Pure and generic first Tits constructions of exceptional Jordan division algebras. Alg. Grps. Geom.3, 386–398 (1986)MATHMathSciNetGoogle Scholar
  18. 18.
    Petersson, H.P., Racine, M.L.: On the invariants mod 2 of Albert algebras. J. Algebra174, 1049–1072, (1995)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Petersson, H.P., Racine, M.L.: Albert algebras. In: W. Kaup, et al. (eds.): Jordan algebras, Oberwolfach, 1992. Berlin New York: de Gruyter 1994, pp. 197–207Google Scholar
  20. 20.
    Petersson, H.P., Racine, M.L.: Enumeration and classification of Albert algebras: Reduced models and the invariants mod 2. In S. Gonzales (ed.): Non-associative algebra and its applications. Dordrecht Boston London: Kluwer 1994, pp. 334–340Google Scholar
  21. 21.
    Racine, M.L.: A note on quadratic Jordan algebras of degree 3. Trans. Amer. Math. Soc.164, 93–103 (1972)MATHMathSciNetGoogle Scholar
  22. 22.
    Rost, M.: A descent property of Pfister forms. Preprint, 1991Google Scholar
  23. 23.
    Sah, C.H.: Symmetric bilinear forms and quadratic forms. J. Algebra20, 144–160 (1972)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Scharlau, W.: Quadratic and hermitian forms (Grundlehren Math. Wiss. Bd. 270) Berlin Heidelberg New York Tokyo: Springer 1985MATHGoogle Scholar
  25. 25.
    Serre, J.-P.: Résumé des cours de l’année 1990–91. Annuaire du Collège de FranceGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Fachbereich MathematikFernUniversitätHagenDeutschland
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada

Personalised recommendations