Mathematische Zeitschrift

, Volume 223, Issue 3, pp 435–461

The additive divisor problem and its analogs for fourier coefficients of cusp forms. I

  • Matti Jutila
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DI]
    Duke, W, Iwaniec, H: Estimates for Coefficients ofL-functions. In: Proc. Amalfi Conference on Analytic Number Theory, pp. 71–82, Università di Salerno 1992Google Scholar
  2. [EHS]
    Epstein, C., Hafner, J. L., Sarnak, P.: Zeros ofL-functions Attached to Maass Forms. Math. Z.190, 113–128 (1985)MATHCrossRefMathSciNetGoogle Scholar
  3. [EMOT]
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Table of Integral Transforms. New York Toronto London: Mc Graw-Hill 1953Google Scholar
  4. [G1]
    Good, A.: Cusp Forms and Eigenfunctions of the Laplacian. Math. Ann.255, 523–548 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. [G2]
    Good, A.: On Various Means Involving the Fourier Coefficients of Cusp Forms. Math. Z.183, 95–129 (1983)MATHCrossRefMathSciNetGoogle Scholar
  6. [H1]
    Hafner, J. L.: Explicit Estimates in the Arithmetic Theory of Cusp Forms and Poincaré Series. Math. Ann.264, 9–20 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. [H2]
    Hafner, J. L.: On the zeros of Maass wave fromL-functions. Bull. Amer. Math. Soc.15, 61–64 (1986)MATHCrossRefMathSciNetGoogle Scholar
  8. [Iv]
    Ivić, A.: The Riemann zeta-function. New York: John Wiley & Sons 1985MATHGoogle Scholar
  9. [IM]
    Ivić, A.: Motohashi, Y.: The mean square of the error term for the fourth power mean of the zeta-function. Proc. London Math. Soc. (3)69, 309–329 (1994)MATHMathSciNetGoogle Scholar
  10. [Iw1]
    Iwaniec, H.: Fourier coefficients of cusp forms and the Riemann zeta-function. In: Séminaire de Théorie des Nombres Bordeaux 1979/1980, exposé no 18Google Scholar
  11. [Iw2]
    Iwaniec, H.: Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums. In: Journées Arithmétiques de Exeter 1980, pp. 306–321, Cambridge: Cambridge University Press 1982CrossRefGoogle Scholar
  12. [Iw3]
    Iwaniec, H.: The spectral growth of automorphicL-functions. J. reine angew. Math.428, 139–159 (1992)MATHMathSciNetGoogle Scholar
  13. [J1]
    Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Tata Institute of Fundamental Research, Bombay (Lectures on Mathematics on Physics, vol. 80), Berlin Heidelberg New York Tokyo: Springer 1987.Google Scholar
  14. [J2]
    Jutila, M.: The Additive Divisor Problem and Exponential Sums. In: Advances in Number Theory, pp. 113–135, Oxford: Clarendon Press 1993Google Scholar
  15. [J3]
    Jutila, M.: On Spectral Large Sieve Inequalities (to appear)Google Scholar
  16. [JM]
    Jutila, M., Motohashi, Y.: Mean value estimates for exponential sums andL-functions: a spectral theoretic approach. J. reine angew. Math.459, 61–87 (1995)MATHMathSciNetGoogle Scholar
  17. [K1]
    Kuznetsov, N. V.: Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture. Sums of Kloosterman sums (in Russian). Mat. Sb.111, 334–383 (1980)Google Scholar
  18. [K2]
    Kuznetsov, N. V.: On the mean value of the Hecke series of a cusp form of weight zero (in Russian). Zap. Nauch. Sem. LOMI109, 93–130 (1981)MATHGoogle Scholar
  19. [K3]
    Kuznetsov, N. V.: Convolution of the Fourier coefficients of the Eisenstein-Maass series (in Russian). Zap. Nauch. Sem. LOMI129, 43–84 (1983)MATHGoogle Scholar
  20. [Le]
    Lebedev, N. N.: Special functions and their applications. New York: Dover Publications Inc. 1972MATHGoogle Scholar
  21. [Lu]
    Luo, W.: Spectral Mean-values of AutomorphicL-functions at Special Points (to appear)Google Scholar
  22. [M]
    Meurman, T.: On exponential sums involving the Fourier coefficients of Maass wave forms. J. Reine Angew. Math.384, 192–207 (1988)MATHMathSciNetGoogle Scholar
  23. [Mon]
    Montgomery, H. L.: Topics in multiplicative number theory. (Lecture Notes in Mathematics, vol. 227) Berlin Heidelberg New York: Springer 1971MATHCrossRefGoogle Scholar
  24. [MS]
    Moreno, C., Shahidi, F.: TheL-functionsL(s, Symm(r),π). Canadian Math. Bull.28, 408–410 (1985)MathSciNetGoogle Scholar
  25. [Mot]
    Motohashi, Y.: The Binary Additive Divisor Problem. Ann. Sci. l’Ecole Norm. Sup.27, 529–572 (1994)MATHMathSciNetGoogle Scholar
  26. [S]
    Sarnak, P.: Integrals of products of eigenfunctions. Int. Math. Res. Not.6, 251–260 (1994)CrossRefMathSciNetGoogle Scholar
  27. [T]
    Tichmarsh, E. C.: The Theory of the Riemann Zeta-functions, 2nd edn. Oxford: Clarendon Press 1986Google Scholar
  28. [TV]
    Tahtadjan, L. A., Vinogradov, A. I.: The zeta-function of the additive divisor problem and the spectral decomposition of the automorphic Laplacian (in Russian). Zap. Nauch. Sem. LOMI134, 84–116 (1984)Google Scholar
  29. [WW]
    Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge: Cambridge Univ. Press 1950Google Scholar
  30. [Z]
    Zagier, D.: The Rankin-Selberg method for automorphic functions which are not of rapid decay. J. Fac. Sci. Univ. Tokyo Sect. IA Math.28, 415–437 (1981)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Matti Jutila
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations