Advertisement

Journal of Geodesy

, Volume 73, Issue 9, pp 436–447 | Cite as

Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere

  • A. Albertella
  • F. Sansò
  • N. Sneeuw
Article

Abstract.

The Slepian problem consists of determining a sequence of functions that constitute an orthonormal basis of a subset of ℝ (or ℝ2) concentrating the maximum information in the subspace of square integrable functions with a band-limited spectrum. The same problem can be stated and solved on the sphere. The relation between the new basis and the ordinary spherical harmonic basis can be explicitly written and numerically studied. The new base functions are orthogonal on both the subspace and the whole sphere. Numerical tests show the applicability of the Slepian approach with regard to solvability and stability in the case of polar data gaps, even in the presence of aliasing. This tool turns out to be a natural solution to the polar gap problem in satellite geodesy. It enables capture of the maximum amount of information from non-polar gravity field missions.

Key words. Slepian Polar gap Spherical harmonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. Albertella
    • 1
  • F. Sansò
    • 1
  • N. Sneeuw
    • 2
  1. 1. DIIAR – Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy e-mail: alberta@ipmtf4.topo.polimi.it; Tel.: +39 2 2399 6504; Fax: +39 2 2399 6530IT
  2. 2. Institut für Astronomische und Physikalische Geodäsie, Technische Universität München, D-80290 München, Germany e-mail: sneeuw@step.iapg.verm.tu-muenchen.de; Tel.: +48 89 28923193, Fax: +48 89 28923178DE

Personalised recommendations