Initial-boundary value problems for nonlinear systems of conservation laws

  • D. Amadori


The system of conservation laws ¶¶u t +[f(u)] x = 0 (1)¶ is considered on a domain \(\{(t,x);\ t\ge 0,\ x> \Psi(t)\}\), for a continuous map \(\Psi:[0,\infty)\rightarrow {\bfR}\), subject to the initial condition ¶¶\( u(0,x)=\bar u(x),\quad x> \Psi(0)\). (2) ¶¶ We prove two global existence theorems for (1) - (2) for two distinct types of boundary conditions, with data of small total variation.


Boundary Condition Total Variation Nonlinear System Distinct Type Global Existence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel, 1997

Authors and Affiliations

  • D. Amadori
    • 1
  1. 1.S.I.S.S.A. - I.S.A.S., Via Beirut 2, 4 - 34014 Trieste, Italy IT

Personalised recommendations