Discrete & Computational Geometry

, Volume 20, Issue 2, pp 163–177 | Cite as

A special case of mahler’s conjecture

Article

Abstract

A special case of Mahler’s conjecture on the volume-product of symmetric convex bodies in n-dimensional Euclidean space is treated here. This is the case of poly topes with at most 2n+2 vertices (or facets). Mahler’s conjecture is proved in this case for n ≤ 8 and the minimal bodies are characterized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ball. Cube slicing in ℝn. Proc. Amer. Math. Soc. 97 (1986), 465–473.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. Ball. Mahler’s conjecture and wavelets. Discrete Comput. Geom. 13 (1995), 271–277.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. L. Barrow and P. W. Smith. Spline notation applied to a volume problem. Amer. Math. Monthly 86 (1979), 50–51.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    W. Barthel. Zum Busemannschen und Brunn-Minkowskischen Satz. Math. Z. 70 (1959), 407–429.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Barthel and G. Franz. Eine Verallgemeinerung des Busemannschen Satzes vom Brunn-Minkowskischen Typ. Math. Ann. 144 (1961), 183–198.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Bourgain and V. D. Milman. New volume ratio properties for convex symmetric bodies in ℝn. Invent. Math. 88 (1987), 319–340.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Busemann. A theorem on convex bodies of the Brunn-Minkowski type. Proc. Nat. Acad. Sci. U.SA. 35 (1949), 27–31.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. J. Gardner. Geometric Tomography. Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  9. 9.
    Y. Gordon, M. Meyer, and S. Reisner. Zonoids with minimal volume-product—a new proof. Proc. Amer. Math. Soc. 104 (1988), 273–276.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. Mahler. Ein Minimalproblem für konvexe Polygone. Mathematica (Zutphen) B7 (1939), 118–127.MathSciNetGoogle Scholar
  11. 11.
    K. Mahler. Ein Übertragungsprinzip für knovexe Körper. Časopis Pěst. Mat. Fys. 68 (1939), 93–102.MathSciNetGoogle Scholar
  12. 12.
    K. Mehlhorn and S. Näher. LEDA, a platform for combinatorial and geometric computing. Comm. ACM 38(1) (1995), 96–102.CrossRefGoogle Scholar
  13. 13.
    M. Meyer. Une charactérisation volumique de certains espaces normés de dimension finie. Israel J. Math. 55 (1986), 317–326.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Myer. A volume inequality concerning sections of convex sets. Bull. London Math. Soc. 20 (1988), 151–155.CrossRefMathSciNetGoogle Scholar
  15. 15.
    S. Reisner. Zonoids with minimal volume-product. Math. Z. 192 (1986), 339–346.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. Reisner. Minimal volume-product in Banach spaces with a 1-unconditional basis. J. London Math. Soc. 36 (1987), 126–136.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Saint Raymond.Sur le volume des corps convexes symétriques. In: Séminaire d’Initiation à l’Analyse, Univ. Pierre et Marie Curie, Paris, 1980/81, vol. 11, 25 pp.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of DenverDenverUSA
  2. 2.Department of Mathematics and School of Education-OranimUniversity of HaifaHaifaIsrael

Personalised recommendations