Journal of Molecular Evolution

, Volume 44, Supplement 1, pp S98–S116 | Cite as

Phylogenetic reconstruction of the felidae using 16S rRNA and NADH-5 mitochondrial genes

  • Warren E. Johnson
  • Stephen J. O’BrienEmail author
Molecular phylogeny


The Felidae family represents a challenge for molecular phylogenetic reconstruction because it consists of 38 living species that evolved from a relatively recent common ancestor (10–15 million years ago). We have determined mitochondrial DNA sequences from two genes that evolve at relatively rapid evolutionary rates, 16S rRNA (379 bp) and NADH dehydrogenase subunit 5 (NADH-5, 318 bp), from multiple individuals of 35 species. Based on separate and combined gene analyses using minimum evolution, maximum parsimony, and maximum likelihood phylogenetic methods, we recognized eight significant clusters or species clades that likely reflect separate monophyletic evolutionary radiations in the history of this family. The clusters include (1) ocelot lineage, (2) domestic cat lineage, (3) Panthera genus, (4) puma group, (5) Lynx genus, (6) Asian leopard cat group, (7) caracal group, and (8) bay cat group. The results confirm and extend previously hypothesized associations in most cases, but in others, e.g., the bay cat group, suggest novel phylogenetic relationships. The results are compared and evaluated with molecular, cytogenetic, and morphological data to derive a phylogenetic synthesis of field evolutionary history.

Key words

Phylogeny 16S rRNA NADH dehydrogenase subunit 5 (NADH-5) Mitochondrial sequence data Felidae 


  1. Adams DB (1979) The cheetah: native American. Science 205:1155–1158PubMedCrossRefGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  3. Benveniste RE, Todaro GJ (1974) Homology between type-C viruses of various species as determined by molecular hybridization. Proc Natl Acad Sci USA 70:3316–3320CrossRefGoogle Scholar
  4. Benveniste RE, Sherr CJ, Todaro GJ (1975) Evolution of type C viral genes: origin of feline leukemia virus. Science 190:886–888PubMedCrossRefGoogle Scholar
  5. Benveniste RE (1985) The contributions of retroviruses to the study of mammalian evolution. In: Maclntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 359–417Google Scholar
  6. Berta A (1983) A new species of small cat (Felidae) from the late Pliocene-early Pleistocene Uquian of Argentinian. J Mammal 64: 720–725CrossRefGoogle Scholar
  7. Clutton-Brock J (1987) A natural history of domesticated animals. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  8. Collier GE, O’Brien SJ (1985) A molecular phylogeny of the Felidae: immunological distance. Evolution 39:437–487CrossRefGoogle Scholar
  9. Engelke DR, Hoener PA, Collins FS (1988) Direct sequencing of enzymatically amplified human genomic DNA. Proc Natl Acad Sci USA 85:544–548PubMedCrossRefGoogle Scholar
  10. Ewer RF (ed) (1973) The carnivores. Cornell University Press, Ithaca, NY 409 pp.Google Scholar
  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  12. Felsenstein J (1993) Phylogeny inference package (PHYLIP). Version 3.5. University of Washington, SeattleGoogle Scholar
  13. Ficcarelli G (1984). The Villafranchian cheetahs from Tuscany and remarks on the dispersal and evolution of the genus Acinonyx. Palaeontographia Italica 73:94–103Google Scholar
  14. Glass GE, Martin LD (1978) A multivariate comparison of some extant and fossil Felidae, Carnivora. Carnivora 1:80–88Google Scholar
  15. Hemmer H (1978) The evolutionary systematics of living Felidae: present status and current problems. Carnivore 1:71–79Google Scholar
  16. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  17. Hillis DM (1995) Approaches for assessing phylogenetic accuracy. Syst Biol 44:3–16Google Scholar
  18. Hoelzel AR, Green A (1992) Analysis of population-level variation by sequencing PCR-amplified DNA. In: Hoelzel AR (ed) Molecular genetic analysis of populations, a practical approach. IRL Press, Oxford pp. 159–187Google Scholar
  19. Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in the four-taxon case. Syst Biol 42:247–264Google Scholar
  20. Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11:152–157CrossRefGoogle Scholar
  21. Hunt MH (1996) Biogeography of the order Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution, vol 2. Cornell University Press, Ithaca, NY, pp. 485–541Google Scholar
  22. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34PubMedGoogle Scholar
  23. Janczewski DN, Modi WS, Stephens JC, O’Brien SJ (1995) Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the Pantherine lineage of Felidae. Mol Biol Evol 12:690–707PubMedGoogle Scholar
  24. Johnson WE, Dratch PA, Martenson JS, O’Brien SJ (1996) Resolution of recent radiations within three evolutionary lineages of Felidae using mitochondrial restriction fragment length polymorphism variation. J Mammal Evol 3:97–120CrossRefGoogle Scholar
  25. Johnson WE, Culver M, Warte A, O’Brien SJ (submitted) Tracking the evolution of the elusive Andean Mountain Cat (Oreailurus jacobita) from mitochondrial DNA. J HeredityGoogle Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  27. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epiarates (Boidae, Serpentes) Syst Zool 38:7–25Google Scholar
  28. Kumar S, Tamura K, Nei M (1993) MEGA: Molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park, PAGoogle Scholar
  29. Kurten B (1968) Pleistocene mammals of Europe. Aldine Press, ChicagoGoogle Scholar
  30. Kurten B, Anderson E (1980) In: Pleistocene mammals of North America. Columbia University Press, New York, pp. 108–118Google Scholar
  31. Leyhausen P (1979) Cat behavior. Garland Press, New YorkGoogle Scholar
  32. Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190PubMedGoogle Scholar
  33. Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246PubMedCrossRefGoogle Scholar
  34. Lopez JV, Culver M, Stephens JC, Johnson WE, O’Brien SJ (submitted) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol EvolGoogle Scholar
  35. MacFadden BJ, Galiano H (1981) Late Hemphillian cat (Mammalia: Felidae) from the Bone Valley Formation of central Florida. J Paleontolo 55:218–226Google Scholar
  36. Martin LD (1980) Functional morphology and the evolution of cats. Trans Neb Acad Sci 13:141–154Google Scholar
  37. Martin LD (1989) Fossil history of the terrestrial Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Cornell University Press, Cornell, NY, pp 536–568Google Scholar
  38. Masuda RM, Lopez JV, O’Brien SJ, Pecon Slattery J, Yuhki N, O’Brien SJ (in press) Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages. Mol Phyl EvolGoogle Scholar
  39. Modi WS, Nash WG, Ferrari AC, O’Brien SJ (1987) Cytogenetic methodologies for gene mapping and comparative analyses in mammalian cell culture systems. Gene Anal Tech 4:75–85PubMedCrossRefGoogle Scholar
  40. Modi WS, O’Brien SJ (1988) Quantitative cladistic analysis of chromosomal banding among species in three orders of mammals: hominoid primates, felids and arvicolid rodents. In: Gustafson JP, Appels R (eds) Chromosome structure and function. Plenum Press, New YorkGoogle Scholar
  41. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453PubMedCrossRefGoogle Scholar
  42. Neff NA (1982) The big cats: the paintings of Guy Coheleach. Abrams Press, New YorkGoogle Scholar
  43. Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds) Evolutionary processes and theory. Academic Press, Orlando, FLGoogle Scholar
  44. Nowak RM (1991) Walker’s mammals of the world, vol 2. John Hopkins University Press, BaltimoreGoogle Scholar
  45. O’Brien SJ, Collier GE, Benveniste RE, Nash WG, Newman AK, Simonson JM, Eichelberger MA, Seal US, Janssen D, Bush M, Wildt DE (1987) Setting the molecular clock in Felidae: the great cats, Panthern. In: Tilson RL, Seal US (eds) Tigers of the world. Noyes, NJ, pp 10–27Google Scholar
  46. Orr PC (1969) Felis trumani, a new radiocarbon dated cat skull from Crypt Cave, Nevada. Santa Barbara Mus Nat Hist Bull 2:1–8Google Scholar
  47. Patterson B, Pascual R (1972) The fossil mammal fauna of South American. In: Keast A, Erk C, Glass B (eds) Evolution, mammals and southern continents. State University of New York Press, Albany, NY, pp 247–309Google Scholar
  48. Pecon Slattery J, Johnson WE, Goldman D, O’Brien SJ (1994) Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J Mol Evol 39:296–305CrossRefGoogle Scholar
  49. Peters G, Hast MH (1994) Hyoid structure, laryngeal anatomy, and vocalization in fields (Mammalia: Carnivora: Felidae). Z Saugetierkunde 59:87–104Google Scholar
  50. Pocock, RI (1932) The marbled cat (Pardofelis marmorata) and some other Oriental species, with the definition of a new genus of the Felidae. Proc Zool Soc London 132:741–766Google Scholar
  51. Randi E, Ragni B (1991) Genetic variability and biochemical systematics of domestic and wild cat populations (Felis silvestris: Felidae). J Mamm 72:79–88CrossRefGoogle Scholar
  52. Reeves RH, O’Brien SJ (1984) Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences of the domestic cat. J Virol 52:164–171PubMedGoogle Scholar
  53. Saiki RK, Scharf S, Fallona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  54. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–426PubMedGoogle Scholar
  55. Salles LO (1992) Felid phylogenetics: extant taxa and skull morphology (Felidae, Aeluroidae). Am Mus Novit 3047:1–67Google Scholar
  56. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a lab manual. 2nd ed. Cold Spring Harbor Laboratory publications, Cold Spring Harbor, NYGoogle Scholar
  57. Savage DE, Russell DE (1983) Mammalian paleofaunas of the world. Addison-Wesley, LondonGoogle Scholar
  58. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisae, Schizosaccharomyces pombe, Drosophila melanogaster, and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211PubMedCrossRefGoogle Scholar
  59. Sibley SG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26:99–121PubMedCrossRefGoogle Scholar
  60. Sourdis J, Nei M (1988) Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct tree. Mol Biol Evol 5:298–311PubMedGoogle Scholar
  61. Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP), version 3.1.1. University of Illinois, ChampaignGoogle Scholar
  62. Turner A (1985) Extinction, speciation and dispersal in African larger carnivores from the late Miocene to Recent. S Afr J Sci 81:256–257Google Scholar
  63. Turner A (1987) New fossil carnivore remains from the Sterkfontein hominid site (Mammalia: Camivora). Ann Transvall Mus 34:319–347Google Scholar
  64. Umbgrove JHF (1949) Structural history of the East Indies. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  65. Van Valkenburgh B, Grady F, Kurten B (1990) The Plio-Pleistocene cheetah-like cat Miracinonyx inexpectatus of North America. J Vert Paleo 10:434–454Google Scholar
  66. Werdelin L (1985) Small pleistocene felines of North America. J Vert Paleo 5:194–210Google Scholar
  67. Wozencraft C (1993) Order Carnivora, Family Felidae. In: Wilson DE, Reeder DA (eds) Mammal species of the world. Smithonsian Institution Press, 2nd edition. Washington, DC, pp 288–299Google Scholar
  68. Wu CI (1991) Inference of species phylogeny in relation to segregation of ancient polymorphisms. Genetics 127:429–435PubMedGoogle Scholar
  69. Wurster-Hill DH, Centerwall WR (1982) The interrelationships of chromosome banding patterns in Procyonids, Viverrids and Felids. Cytogenet Cell Genet 34:178–192PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  1. 1.Laboratory of Genomic DiversityNational Cancer InstituteFrederickUSA

Personalised recommendations