Four-particle scattering amplitudes in QCD at NNLO to higher orders in the dimensional regulator

Abstract

We compute all helicity amplitudes for four particle scattering in massless QCD with nf fermion flavours to next-to-next-to-leading order (NNLO) in perturbation theory. In particular, we consider all possible configurations of external quarks and gluons. We evaluate the amplitudes in terms of a Laurent series in the dimensional regulator to the order required for future next-to-next-to-next-to-leading order (N3LO) calculations. The coefficients of the Laurent series are given in terms of harmonic polylogarithms that can readily be evaluated numerically. We present our findings in the conventional dimensional regularisation and in the t’Hooft-Veltman schemes.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP05 (2018) 195 [arXiv:1711.02692] [INSPIRE].

  2. [2]

    CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].

  3. [3]

    CMS collaboration, Measurement of the triple-differential dijet cross section in proton-proton collisions at \( \sqrt{s} \) = 8 TeV and constraints on parton distribution functions, Eur. Phys. J.C 77 (2017) 746 [arXiv:1705.02628] [INSPIRE].

  4. [4]

    J. Gao, Z. Liang, D.E. Soper, H.-L. Lai, P.M. Nadolsky and C.P. Yuan, MEKS: a program for computation of inclusive jet cross sections at hadron colliders, Comput. Phys. Commun.184 (2013) 1626 [arXiv:1207.0513] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP04 (2011) 081 [arXiv:1012.3380] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  6. [6]

    W.T. Giele, E.W.N. Glover and D.A. Kosower, The two-jet differential cross section at \( \mathcal{O}\left({\alpha}_s^3\right) \)in hadron collisions, Phys. Rev. Lett.73 (1994) 2019 [hep-ph/9403347] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order \( alph{a}_S^3 \)in QCD, Phys. Rev. Lett.69 (1992) 1496 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett.119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Triple differential dijet cross section at the LHC, Phys. Rev. Lett.123 (2019) 102001 [arXiv:1905.09047] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss and J. Pires, Jet cross sections at the LHC with NNLOJET, PoS(LL2018)001 (2018) [arXiv:1807.06057] [INSPIRE].

  11. [11]

    M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact color at \( \mathcal{O}\left({\alpha}_s^4\right) \), JHEP10 (2019) 262 [arXiv:1907.12911] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys.B 601 (2001) 318 [hep-ph/0010212] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys.B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    Z. Bern, L.J. Dixon and D.A. Kosower, A two loop four gluon helicity amplitude in QCD, JHEP01 (2000) 027 [hep-ph/0001001] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys.B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys.B 605 (2001) 486 [hep-ph/0101304] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP06 (2003) 028 [Erratum ibid.04 (2014) 112] [hep-ph/0304168] [INSPIRE].

  19. [19]

    A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP09 (2004) 039 [hep-ph/0409007] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    A. De Freitas and Z. Bern, Two-loop helicity amplitudes for fermion-fermion scattering, Nucl. Phys. Proc. Suppl.135 (2004) 51 [hep-ph/0409036] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett.119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    E.W.N. Glover and M.E. Tejeda-Yeomans, Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering, JHEP06 (2003) 033 [hep-ph/0304169] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. Broggio, A. Ferroglia, B.D. Pecjak and Z. Zhang, NNLO hard functions in massless QCD, JHEP12 (2014) 005 [arXiv:1409.5294] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    Q. Jin and H. Lüo, Analytic form of the three-loop four-gluon scattering amplitudes in Yang-Mills theory, arXiv:1910.05889 [INSPIRE].

  26. [26]

    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].

  27. [27]

    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys.B 379 (1992) 451 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett.B 103 (1981) 124 [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Helicity amplitudes for massless QED, Phys. Lett.B 105 (1981) 215 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    A. Broggio, C. Gnendiger, A. Signer, D. Stöckinger and A. Visconti, SCET approach to regularization-scheme dependence of QCD amplitudes, JHEP01 (2016) 078 [arXiv:1506.05301] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  34. [34]

    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett.97 (2006) 072001 [hep-ph/0606254] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  35. [35]

    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].

  37. [37]

    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP09 (2017) 073 [arXiv:1706.10162] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    L. Chen, A prescription for projectors to compute helicity amplitudes in D dimensions, arXiv:1904.00705 [INSPIRE].

  43. [43]

    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for gg → Zg and gg → Zγ, JHEP04 (2013) 101 [arXiv:1302.2630] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    T. Peraro and L. Tancredi, Physical projectors for multi-leg helicity amplitudes, JHEP07 (2019) 114 [arXiv:1906.03298] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  46. [46]

    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  47. [47]

    B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

  48. [48]

    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett.B 100 (1981) 65 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP07 (2008) 031 [arXiv:0804.3008] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  52. [52]

    R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP11 (2013) 165 [arXiv:1308.6676] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  54. [54]

    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett.B 267 (1991) 123 [Erratum ibid.B 295 (1992) 409] [INSPIRE].

  55. [55]

    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    J.M. Henn and B. Mistlberger, Four-gluon scattering at three loops, infrared structure and the Regge limit, Phys. Rev. Lett.117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    J.M. Henn and B. Mistlberger, Four-graviton scattering to three loops in N = 8 supergravity, JHEP05 (2019) 023 [arXiv:1902.07221] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP03 (2014) 071 [arXiv:1401.4361] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  64. [64]

    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  66. [66]

    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, CO, U.S.A., 4–30 June 1995, pg. 539 [hep-ph/9601359] [INSPIRE].

  67. [67]

    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP02 (2017) 090 [arXiv:1701.01404] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys.B 362 (1991) 389 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    S.G. Naculich, All-loop group-theory constraints for color-ordered SU(N ) gauge-theory amplitudes, Phys. Lett.B 707 (2012) 191 [arXiv:1110.1859] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taushif Ahmed.

Additional information

ArXiv ePrint: 1910.06684

Electronic supplementary material

ESM 1

(ZIP 2548 kb)

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Henn, J. & Mistlberger, B. Four-particle scattering amplitudes in QCD at NNLO to higher orders in the dimensional regulator. J. High Energ. Phys. 2019, 177 (2019). https://doi.org/10.1007/JHEP12(2019)177

Download citation

Keywords

  • NLO Computations
  • QCD Phenomenology