Skip to main content

Axion-like-particle decay in strong electromagnetic backgrounds

A preprint version of the article is available at arXiv.


The decay of a massive pseudoscalar, scalar and U(1) boson into an electron-positron pair in the presence of strong electromagnetic backgrounds is calculated. Of particular interest is the constant-crossed-field limit, relevant for experiments that aim to measure high-energy axion-like-particle conversion into electron-positron pairs in a magnetic field. The total probability depends on the quantum nonlinearity parameter — a product of field and lightfront momentum invariants. Depending on the seed particle mass, different decay regimes are identified. In the below-threshold case, we find the probability depends on a non-perturbative tunneling exponent depending on the quantum parameter and the particle mass. In the above-threshold case, we find that when the quantum parameter is varied linearly, the probability oscillates nonlinearly around the spontaneous decay probability. A strong-field limit is identified in which the threshold is found to disappear. In modelling the fall-off of a quasi-constant-crossed magnetic field, we calculate probabilities beyond the constant limit and investigate when the decay probability can be regarded as locally constant.


  1. [1]

    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    A. De Angelis, M. Roncadelli and O. Mansutti, Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?, Phys. Rev.D 76 (2007) 121301 [arXiv:0707.4312] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    A. Mirizzi, G.G. Raffelt and P.D. Serpico, Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences, Springer, Heidelberg Germany (2008), pg. 115.

  4. [4]

    M. Simet, D. Hooper and P.D. Serpico, The Milky Way as a Kiloparsec-Scale Axionscope, Phys. Rev.D 77 (2008) 063001 [arXiv:0712.2825] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    M.A. Sanchez-Conde, D. Paneque, E. Bloom, F. Prada and A. Domínguez, Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources, Phys. Rev.D 79(2009) 123511 [arXiv:0905.3270] [INSPIRE].

  6. [6]

    E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein and S.W. Randall, Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Astrophys. J.789 (2014) 13 [arXiv:1402.2301] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, Phys. Rev. Lett.113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Jaeckel, J. Redondo and A. Ringwald, 3.55 keV hint for decaying axionlike particle dark matter, Phys. Rev.D 89 (2014) 103511 [arXiv:1402.7335] [INSPIRE].

  9. [9]

    J. Redondo and A. Ringwald, Light shining through walls, Contemp. Phys.52 (2011) 211 [arXiv:1011.3741] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    K. Ehret et al., New ALPS Results on Hidden-Sector Lightweights, Phys. Lett.B 689 (2010) 149 [arXiv:1004.1313] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    R. Bähre et al., Any light particle search II — Technical Design Report, 2013 JINST8 T09001 [arXiv:1302.5647] [INSPIRE].

  12. [12]

    L. Capparelli, G. Cavoto, J. Ferretti, F. Giazotto, A.D. Polosa and P. Spagnolo, Axion-like particle searches with sub-THz photons, Phys. Dark Univ.12 (2016) 37 [arXiv:1510.06892] [INSPIRE].

    Article  Google Scholar 

  13. [13]

    CAST collaboration, New CAST limit on the axion-photon interaction, Nature Phys.13 (2017) 584.

  14. [14]

    E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 JINST9 T05002 [arXiv:1401.3233] [INSPIRE].

  15. [15]

    A.V. Borisov and V.Y. Grishina, Compton production of axions on electrons in a constant external field, Sov. Phys. JETP83 (1996) 868.

    ADS  Google Scholar 

  16. [16]

    K. Barth et al., CAST constraints on the axion-electron coupling, JCAP05 (2013) 010 [arXiv:1302.6283] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    J.S. Toll, The dispersion relation for light and its application to problems involving electron pairs, Ph.D. Thesis, Princeton University, Princeton U.S.A. (1952).

  18. [18]

    V.N. Baier and V.M. Katkov, Pair creation by a photon in a strong magnetic field, Phys. Rev.D 75 (2007) 073009 [hep-ph/0701119] [INSPIRE].

  19. [19]

    T. Heinzl, A. Ilderton and M. Marklund, Finite size effects in stimulated laser pair production, Phys. Lett.B 692 (2010) 250 [arXiv:1002.4018] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    A.I. Titov, B. Kämpfer, H. Takabe and A. Hosaka, Breit-Wheeler process in very short electromagnetic pulses, Phys. Rev.A 87 (2013) 042106 [arXiv:1303.6487] [INSPIRE].

  21. [21]

    T. Nousch, D. Seipt, B. Kämpfer and A.I. Titov, Pair production in short laser pulses near threshold, Phys. Lett.B 715 (2012) 246 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    V.I. Ritus, Effect of an electromagnetic field on decays of elementary particles, Zh. Eksp. Teor. Fiz.56 (1969) 986.

    Google Scholar 

  23. [23]

    W. Becker et al., A note on total cross sections and decay rates in the presence of a laser field, Phys. Lett.A 94 (1983) 131.

    ADS  Article  Google Scholar 

  24. [24]

    N.B. Narozhny and A.M. Fedotov, Comment on ‘Laser-Assisted Muon Decay’, Phys. Rev. Lett.100 (2008) 219101 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    F.V. Bunkin and I.I. Tugov, Possibility of Creating Electron-Positron Pairs in a Vacuum by the Focusing of Laser Radiation, Sov. Phys. Dokl.14 (1970) 678.

    ADS  Google Scholar 

  26. [26]

    V.S. Popov, Pair production in a variable and homogeneous electric field as an oscillator problem, Sov. Phys. JETP35 (1972) 659.

    ADS  Google Scholar 

  27. [27]

    G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in From fields to strings: Circumnavigating theoretical physics. Ian Kogan memorial collection (3 volume set), M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific, New York U.S.A. (2004), pg. 445 [hep-th/0406216] [INSPIRE].

  28. [28]

    K. Sogut, H. Yanar and A. Havare, Production of Dirac Particles in External Electromagnetic Fields, Acta Phys. Polon.B 48 (2017) 1493 [arXiv:1703.07776] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    G. Piccinelli and A. Sanchez, Magnetic Field Effect on Charged Scalar Pair Creation at Finite Temperature, Phys. Rev.D 96 (2017) 076014 [arXiv:1707.08257] [INSPIRE].

  30. [30]

    M. Coppola, D. Gomez Dumm, S. Noguera and N.N. Scoccola, Neutral and charged pion properties under strong magnetic fields in the NJLS model, Phys. Rev.D 100 (2019) 054014 [arXiv:1907.05840] [INSPIRE].

  31. [31]

    V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, J. Russ. Laser Res.6 (1985) 497.

    Article  Google Scholar 

  32. [32]

    Yu.I. Klimenko, O.S. Pavlova and E.Yu. Klimenko, τ-Lepton decay in an arbitrary plane-wave electromagnetic field, Sov. Phys. J.28 (1985) 972.

    Article  Google Scholar 

  33. [33]

    A.V. Kurilin, Leptonic decays of the W boson in a strong electromagnetic field, Phys. Atom. Nucl.67 (2004) 2095 [arXiv:0709.0335] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A.V. Kurilin, Z0-boson decays in a strong electromagnetic field, Phys. Atom. Nucl.72 (2009) 1034 [arXiv:1309.2780] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    S. Villalba-Chávez and C. Muller, Photo-production of scalar particles in the field of a circularly polarized laser beam, Phys. Lett.B 718 (2013) 992 [arXiv:1208.3595] [INSPIRE].

  36. [36]

    D.A. Burton and A. Noble, Plasma-based wakefield accelerators as sources of axion-like particles, New J. Phys.20 (2018) 033022 [arXiv:1710.01906] [INSPIRE].

  37. [37]

    B. King, Electron-seeded ALP production and ALP decay in an oscillating electromagnetic field, Phys. Lett.B 782 (2018) 737 [arXiv:1802.07507] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    B.M. Dillon and B. King, ALP production through non-linear Compton scattering in intense fields, Eur. Phys. J.C 78 (2018) 775 [arXiv:1802.07498] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    B.M. Dillon and B. King, Light scalars: coherent nonlinear Thomson scattering and detection, Phys. Rev.D 99 (2019) 035048 [arXiv:1809.01356] [INSPIRE].

  40. [40]

    A.K. Harding and D. Lai, Physics of Strongly Magnetized Neutron Stars, Rept. Prog. Phys.69 (2006) 2631 [astro-ph/0606674] [INSPIRE].

  41. [41]

    W.H. Furry, On Bound States and Scattering in Positron Theory, Phys. Rev.81 (1951) 115 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    D.M. Wolkow, Uber eine Klasse von Losungen der Diracschen Gleichung, Z. Phys.94 (1935) 250 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  43. [43]

    M. Marklund and P.K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod. Phys.78 (2006) 591 [hep-ph/0602123] [INSPIRE].

  44. [44]

    H. Gies, Strong laser fields as a probe for fundamental physics, Eur. Phys. J.D 55 (2009) 311 [arXiv:0812.0668] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    A. Di Piazza and A.I. Milstein, Quasiclassical approach to high-energy QED processes in strong laser and atomic fields, Phys. Lett.B 717 (2012) 224 [arXiv:1204.2502] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    N.B. Narozhny and A.M. Fedotov, Extreme light physics, Contemp. Phys.56 (2015) 249 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    D.L. Burke et al., Positron production in multi-photon light by light scattering, Phys. Rev. Lett.79 (1997) 1626 [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    C. Bamber et al., Studies of nonlinear QED in collisions of 46.6-GeV electrons with intense laser pulses, Phys. Rev.D 60 (1999) 092004 [INSPIRE].

  49. [49]

    B. Döbrich and H. Gies, Axion-like-particle search with high-intensity lasers, JHEP10 (2010) 022 [arXiv:1006.5579] [INSPIRE].

  50. [50]

    S. Villalba-Chávez, Laser-driven search of axion-like particles including vacuum polarization effects, Nucl. Phys.B 881 (2014) 391 [arXiv:1308.4033] [INSPIRE].

  51. [51]

    S. Villalba-Chávez, T. Podszus and C. Müller, Polarization-operator approach to optical signatures of axion-like particles in strong laser pulses, Phys. Lett.B 769 (2017) 233 [arXiv:1612.07952] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  52. [52]

    J.T. Mendonca, Axion excitation by intense laser fields, EPL79 (2007) 21001 [hep-ph/0702091] [INSPIRE].

  53. [53]

    C.N. Harvey, A. Ilderton and B. King, Testing numerical implementations of strong field electrodynamics, Phys. Rev.A 91 (2015) 013822 [arXiv:1409.6187] [INSPIRE].

  54. [54]

    A. Di Piazza, M. Tamburini, S. Meuren and C.H. Keitel, Implementing nonlinear Compton scattering beyond the local constant field approximation, Phys. Rev.A 98 (2018) 012134 [arXiv:1708.08276] [INSPIRE].

  55. [55]

    A. Ilderton, B. King and D. Seipt, Extended locally constant field approximation for nonlinear Compton scattering, Phys. Rev.A 99 (2019) 042121 [arXiv:1808.10339] [INSPIRE].

  56. [56]

    B. King, A uniform locally constant field approximation for photon-seeded pair production, arXiv:1908.06985 [INSPIRE].

  57. [57]

    V. Dinu, T. Heinzl, A. Ilderton, M. Marklund and G. Torgrimsson, Vacuum refractive indices and helicity flip in strong-field QED, Phys. Rev.D 89 (2014) 125003 [arXiv:1312.6419] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    F.W.J. Olver, Asymptotics and Special Functions (AKP Classics), AK Peters, Natick U.S.A. (1997).

  59. [59]

    A.I. Nikishov and V.I. Ritus, Quantum Processes in the Field of a Plane Electromagnetic Wave and in a Constant Field 1, Sov. Phys. JETP19 (1964) 529 [INSPIRE].

    MathSciNet  Google Scholar 

  60. [60]

    T. Heinzl and A. Ilderton, A Lorentz and gauge invariant measure of laser intensity, Opt. Commun.282 (2009) 1879.

    ADS  Article  Google Scholar 

  61. [61]

    A. Di Piazza, M. Tamburini, S. Meuren and C.H. Keitel, Implementing nonlinear Compton scattering beyond the local constant field approximation, Phys. Rev.A 98 (2018) 012134 [arXiv:1708.08276] [INSPIRE].

  62. [62]

    N.V. Elkina et al., QED cascades induced by circularly polarized laser fields, Phys. Rev. ST Accel. Beams14(2011) 054401 [arXiv:1010.4528] [INSPIRE].

  63. [63]

    B. King and H. Ruhl, Trident pair production in a constant crossed field, Phys. Rev.D 88 (2013) 013005 [arXiv:1303.1356] [INSPIRE].

  64. [64]

    J.D. Jackson, Classical Electrodynamics, thirrd edition, John Wiley & Sons, Inc., New York U.S.A. (1999).

  65. [65]

    C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys.88 (1934) 612 [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev.45 (1934) 729 [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    T. Heinzl, A. Ilderton and B. King, Classical and quantum particle dynamics in univariate background fields, Phys. Rev.D 94 (2016) 065039 [arXiv:1607.07449] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. [68]

    H.R. Reiss, Absorption of Light by Light, J. Math. Phys.3 (1962) 59.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  69. [69]

    E.K. Akhmedov, Beta decay and other processes in strong electromagnetic fields, Phys. Atom. Nucl.74 (2011) 1299 [arXiv:1011.3776] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    A.M. Fedotov, Qualitative considerations in Intense Field QED, arXiv:1507.08512 [INSPIRE].

  71. [71]

    C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer, Heidelberg Germany (1978).

    MATH  Google Scholar 

  72. [72]

    O. Jansen et al., Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production, Plasma Phys. Control. Fusion60 (2018) 054006.

    ADS  Article  Google Scholar 

  73. [73]

    M. Altarelli et al., Summary of strong-field QED Workshop, arXiv:1905.00059 [INSPIRE].

  74. [74]

    A. Hartin, A. Ringwald and N. Tapia, Measuring the Boiling Point of the Vacuum of Quantum Electrodynamics, Phys. Rev.D 99 (2019) 036008 [arXiv:1807.10670] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    G.V. Dunne, H. Gies and R. Schützhold, Catalysis of Schwinger Vacuum Pair Production, Phys. Rev.D 80 (2009) 111301 [arXiv:0908.0948] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to B. King.

Additional information

ArXiv ePrint: 1905.05201

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King, B., Dillon, B.M., Beyer, K.A. et al. Axion-like-particle decay in strong electromagnetic backgrounds. J. High Energ. Phys. 2019, 162 (2019).

Download citation


  • Beyond Standard Model
  • Precision QED