Limiting shifted homotopy in higher-spin theory and spin-locality

  • 21 Accesses


Higher-spin vertices containing up to quintic interactions at the LagTangian level are explicitly calculated in the one-form sector of the non-linear unfolded higher-spin equations using a 𝛽 →-∞-shifted contracting homotopy introduced in the paper. The problem is solved in a background independent way and for any value of the complex parameter 𝜂 in the higher-spin equations. All obtained vertices are shown to be spin-local containing a finite number of derivatives in the spinor space for any given set of spins. The vertices proportional to 𝜂2 and \( {\overline{\eta}}^2 \) are in addition ultra-local, i.e., zero-forms that enter into the vertex in question are free from the dependence on at least one of the spinor variables y or \( \overline{y} \). Also the 𝜂2 and \( {\overline{\eta}}^2 \) vertices are shown to vanish on any purely gravitational background hence not contributing to the higher-spin current interactions on AdS4. This implies in particular that the gravitational constant in front of the stress tensor is positive being proportional to \( \eta \overline{\eta} \). It is shown that the 𝛽-shifted homotopy technique developed in this paper can be reinterpreted as the conventional one but in the 𝛽-dependent deformed star product.

A preprint version of the article is available at ArXiv.


  1. [1]

    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 +I)-dimensions, Phys. Lett.B 285 (1992) 225 [INSPIRE].

  2. [2]

    O.A. Gelfond and M.A. Vasiliev, Homotopy operators and locality theorems in higher-spin equations, Phys. Lett.B 786 (2018) 180 [arXiv:1805.11941] [INSPIRE].

  3. [3]

    V.E. Didenko, O.A. Gelfond, A.V. Korybut and M.A. Vasiliev, Homotopy properties and lower-order vertices in higher-spin equations, J. Phys.A 51 (2018) 465202 [arXiv:1807.00001] [INSPIRE].

  4. [4]

    M.A. Vasiliev, Equations of motion of interacting massless fields of all spins as a free differential algebra, Phys. Lett.B 209 (1988) 491 [INSPIRE].

  5. [5]

    M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys.190 (1989) 59 [INSPIRE].

  6. [6]

    M.A. Vasiliev, Dynamics of massless higher spins in the second order in curvatures, Phys. Lett.B 238 (1990) 305 [INSPIRE].

  7. [7]

    M.A. Vasiliev, On conformal, SL(4, R) and Sp(8, R) symmetries of 4d massless fields, Nucl. Phys.B 793 (2008) 469 [arXiv:0707.1085] [INSPIRE].

  8. [8]

    M.A. Vasiliev, Star-product functions in higher-spin theory and locality, JHEP06 (2015) 031 [arXiv:1502.02271] [INSPIRE].

  9. [9]

    O.A. Gelfond and M.A. Vasiliev, Spin-locality of higher-spin theories and star-product functional classes, arXiv:1910.00487 [INSPIRE].

  10. [10]

    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys.B 227 (1983) 41 [INSPIRE].

  11. [11]

    F.A. Berends, G.J.H. Burgers and H. Van Dam, On spin three selfinteractions, Z. Phys.C 24 (1984) 247 [INSPIRE].

  12. [12]

    F.A. Berends, G.J.H. Burgers and H. van Dam, On the theoretical problems in constructing interactions involving higher spin massless particles, Nucl. Phys.B 260 (1985) 295 [INSPIRE].

  13. [13]

    R.R. Metsaev, Poincaré invariant dynamics of massless higher spins: fourth order analysis on mass shell, Mod. Phys. Lett.A 6 (1991) 359 [INSPIRE].

  14. [14]

    R.R. Metsaev, S matrix approach to massless higher spins theory. 2: the case of internal symmetry, Mod. Phys. Lett.A 6 (1991) 2411 [INSPIRE].

  15. [15]

    E.S. Fradkin and M.A. Vasiliev, Candidate to the role of higher spin symmetry, Annals Phys.177 (1987) 63 [INSPIRE].

  16. [16]

    M.A. Vasiliev, Extended higher spin superalgebras and their realizations in terms of quantum operators, Fortsch. Phys.36 (1988) 33 [INSPIRE].

  17. [17]

    S.E. Konstein and M.A. Vasiliev, Extended higher spin superalgebras and their massless representations, Nucl. Phys.B 331 (1990) 475 [INSPIRE].

  18. [18]

    R.R. Metsaev, Light-cone gauge cubic interaction vertices for massless fields in AdS 4, Nucl. Phys.B 936 (2018) 320 [arXiv:1807.07542] [INSPIRE].

  19. [19]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

  20. [20]

    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys.B 644 (2002) 303 [Erratum ibid.B 660 (2003) 403][hep-th/0205131] [INSPIRE].

  21. [21]

    X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS interactions in higher-spin gravity from conformal field theory, JHEP11 (2015) 149 [arXiv:1508.04292] [INSPIRE].

  22. [22]

    C. Sleight and M. Taronna, Higher-spin gauge theories and bulk locality, Phys. Rev. Lett.121 (2018) 171604 [arXiv:1704.07859] [INSPIRE].

  23. [23]

    D. Ponomarev, A note on (non)-locality in holographic higher spin theories, Universe4 (2018) 2 [arXiv:1710.00403] [INSPIRE].

  24. [24]

    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

  25. [25]

    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J.C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

  26. [26]

    M.A. Vasiliev, Current interactions and holography from the 0-form sector of nonlinear higher-spin equations, JHEP10 (2017) 111 [arXiv:1605.02662] [INSPIRE].

  27. [27]

    M.A. Vasiliev, On the local frame in nonlinear higher-spin equations, JHEP01 (2018) 062 [arXiv:1707.03735] [INSPIRE].

  28. [28]

    O.A. Gelfond and M.A. Vasiliev, Current interactions from the one-form sector of nonlinear higher-spin equations, Nucl. Phys.B 931 (2018) 383 [arXiv:1706.03718] [INSPIRE].

  29. [29]

    S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys.A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

  30. [30]

    N. Boulanger, P. Kessel, E.D. Skvortsov and M. Taronna, Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal, J. Phys.A 49 (2016) 095402 [arXiv:1508.04139] [INSPIRE].

  31. [31]

    M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  32. [32]

    M.A. Vasiliev, Triangle identity and free differential algebra of massless higher spins, Nucl. Phys.B 324 (1989) 503 [INSPIRE].

  33. [33]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys.A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

  34. [34]

    O.A. Gelfond and M.A. Vasiliev, Unfolded equations for current interactions of 4d massless fields as a free system in mixed dimensions, J. Exp. Theor. Phys.120 (2015) 484 [arXiv:1012.3143] [INSPIRE].

  35. [35]

    N. Misuna, On current contribution to Fronsdal equations, Phys. Lett.B 778 (2018) 71 [arXiv:1706.04605] [INSPIRE].

  36. [36]

    D. De Filippi, C. Iazeolla and P. Sundell, Fronsdal fields from gauge functions in Vasiliev’s higher spin gravity, JHEP10 (2019) 215 [arXiv:1905.06325] [INSPIRE].

  37. [37]

    R. Bonezzi, N. Boulanger, D. De Filippi and P. Sundell, Noncommutative Wilson lines in higher-spin theory and correlation functions of conserved currents for free conformal fields, J. Phys.A 50 (2017) 475401 [arXiv:1705.03928] [INSPIRE].

  38. [38]

    C. Iazeolla, E. Sezgin and P. Sundell, On exact solutions and perturbative schemes in higher spin theory, Universe4 (2018) 5 [arXiv:1711.03550] [INSPIRE].

  39. [39]

    F.A. Berezin and M.A. Shubin, Schrödinger equation, Moscow University Press, Moscow, Russia (1983).

  40. [40]

    V.E. Didenko and M.A. Vasiliev, Static BPS black hole in 4d higher-spin gauge theory, Phys. Lett.B 682 (2009) 305 [ Erratum ibid. B 722 (2013) 389][arXiv:0906.3898] [INSPIRE].

  41. [41]

    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys.B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

  42. [42]

    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A) dS d, Phys. Lett.B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

  43. [43]

    M.A. Vasiliev, From Coxeter higher-spin theories to strings and tensor models, JHEP08 (2018) 051 [arXiv:1804.06520] [INSPIRE].

  44. [44]

    C. Iazeolla and P. Sundell, Families of exact solutions to Vasiliev’s 4D equations with spherical, cylindrical and biaxial symmetry, JHEP12 (2011) 084 [arXiv:1107.1217] [INSPIRE].

  45. [45]

    C. Iazeolla and P. Sundell, Biaxially symmetric solutions to 4D higher-spin gravity, J. Phys.A 46 (2013) 214004 [arXiv:1208.4077] [INSPIRE].

  46. [46]

    V.E. Didenko and M.A. Vasiliev, unpublished.

  47. [47]

    V.E. Didenko, N.G. Misuna and M.A. Vasiliev, Charges in nonlinear higher-spin theory, JHEP03 (2017) 164 [arXiv:1512.07626] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to V.E. Didenko.

Additional information

ArXiv ePrint: 1909.04876

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Didenko, V., Gelfond, O., Korybut, A. et al. Limiting shifted homotopy in higher-spin theory and spin-locality. J. High Energ. Phys. 2019, 86 (2019) doi:10.1007/JHEP12(2019)086

Download citation


  • Higher Spin Gravity
  • Higher Spin Symmetry
  • Gauge-gravity correspondence