Fakeons, unitarity, massive gravitons, and the cosmological constant

  • 36 Accesses


We give a simple proof of perturbative unitarity in gauge theories and quantum gravity using a special gauge that allows us to separate the physical poles of the free propagators, which are quantized by means of the Feynman prescription, from the poles that belong to the gauge-trivial sector, which are quantized by means of the fakeon prescription. The proof applies to renormalizable theories, including the ultraviolet complete theory of quantum gravity with fakeons formulated recently, as well as low-energy (nonrenormalizable) theories. We clarify a number of subtleties related to the study of scattering processes in the presence of a cosmological constant Λ. The scattering ampli- tudes, defined by expanding the metric around flat space, obey the optical theorem up to corrections due to Λ, which are negligible for all practical purposes. Problems of interpretation would arise if such corrections became important. In passing, we obtain local, unitary (and “almost” renormalizable) theories of massive gravitons and gauge fields, which violate gauge invariance and general covariance explicitly.

A preprint version of the article is available at ArXiv.


  1. [1]

    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE].

  2. [2]

    M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica29 (1963) 186 [INSPIRE].

  3. [3]

    G. ’t Hooft and M. Veltman, Diagrammar, CERN-73-09.

  4. [4]

    M. Veltman, Diagrammatica. The path to Feynman rules, Cambridge University Press, New York (1994) [INSPIRE].

  5. [5]

    G. ’t Hooft, Renormalization of Massless Yang-Mills Fields, Nucl. Phys.B 33 (1971) 173 [INSPIRE].

  6. [6]

    G. ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys.B 35 (1971) 167 [INSPIRE].

  7. [7]

    D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP06 (2017) 086 [arXiv:1704.07728, 17A3] [INSPIRE].

  8. [8]

    D. Anselmi, Fakeons And Lee-Wick Models, JHEP02 (2018) 141 [arXiv:1801.00915] [18A1] [INSPIRE].

  9. [9]

    T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys.B 9 (1969) 209 [INSPIRE].

  10. [10]

    T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev.D 2 (1970) 1033 [INSPIRE].

  11. [11]

    D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP06 (2017) 066 [arXiv:1703.04584] [17A1] [INSPIRE].

  12. [12]

    D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory, Phys. Rev.D 96 (2017) 045009 [arXiv:1703.05563] [17A2] [INSPIRE].

  13. [13]

    R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys.B 12 (1969) 281 [INSPIRE].

  14. [14]

    N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev.D 3 (1971) 811 [INSPIRE].

  15. [15]

    D. Anselmi and M. Piva, The Ultraviolet Behavior of Quantum Gravity, JHEP05 (2018) 027 [arXiv:1803.07777] [18A2] [INSPIRE].

  16. [16]

    D. Anselmi and M. Piva, Quantum Gravity, Fakeons And Microcausality, JHEP11 (2018) 021 [arXiv:1806.03605] [18A3] [INSPIRE].

  17. [17]

    D. Anselmi, Aspects of perturbative unitarity, Phys. Rev.D 94 (2016) 025028 [arXiv:1606.06348] [16A1] [INSPIRE].

  18. [18]

    S.B. Giddings, The Boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett.83 (1999) 2707 [hep-th/9903048] [INSPIRE].

  19. [19]

    V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about Anti-de Sitter space-times?, JHEP03 (1999) 001 [hep-th/9902052] [INSPIRE].

  20. [20]

    J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys.295 (2010) 261 [arXiv:0901.4223] [INSPIRE].

  21. [21]

    E.T. Akhmedov and P.V. Buividovich, Interacting Field Theories in de Sitter Space are Non-Unitary, Phys. Rev.D 78 (2008) 104005 [arXiv:0808.4106] [INSPIRE].

  22. [22]

    E.T. Akhmedov, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys.D 23 (2014) 1430001 [arXiv:1309.2557] [INSPIRE].

  23. [23]

    D. Marolf, I.A. Morrison and M. Srednicki, Perturbative S-matrix for massive scalar fields in global de Sitter space, Class. Quant. Grav.30 (2013) 155023 [arXiv:1209.6039] [INSPIRE].

  24. [24]

    V.A. Rubakov, Lorentz-violating graviton masses: Getting around ghosts, low strong coupling scale and VDVZ discontinuity, hep-th/0407104 [INSPIRE].

  25. [25]

    G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett.B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

  26. [26]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

  27. [27]

    D. Anselmi, The correspondence principle in quantum field theory and quantum gravity 18A5 [PhilSci 15287] [OSF preprints d2nj7] [Preprints 2018110213] [hal-01900207].

  28. [28]

    D. Anselmi, Fakeons, quantum gravity and the correspondence principle, in Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics ”, F. Finster, D. Giulini, J. Kleiner and J. Tolksdorf eds., Birkhäuser Verlag (2019) [19R2] [arXiv:1911.10343] [INSPIRE].

  29. [29]

    D. Anselmi, Fakeons and the classicization of quantum gravity: the FLRW metric, JHEP04 (2019) 061 [arXiv:1901.09273] [19A1] [INSPIRE].

  30. [30]

    J.C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev.78 (1950) 182 [INSPIRE].

  31. [31]

    Y. Takahashi, On the generalized Ward identity, Nuovo Cim.6 (1957) 371 [INSPIRE].

  32. [32]

    A.A. Slavnov, Ward Identities in Gauge Theories, Theor. Math. Phys.10 (1972) 99 [INSPIRE].

  33. [33]

    J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys.B 33 (1971) 436 [INSPIRE].

  34. [34]

    J. Zinn-Justin, Renormalization of gauge theories, in Trends in Elementary Particle Physics, H. Rollnik and K. Dietz eds., Springer-Verlag, Berlin Lect. Notes Phys.37 (1975) 1.

  35. [35]

    I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett.102B (1981) 27 [INSPIRE].

  36. [36]

    I.A. Batalin and G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent Generators, Phys. Rev.D 28 (1983) 2567 [Erratum ibid.D 30 (1984) 508] [INSPIRE].

  37. [37]

    S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge (1996) [INSPIRE].

  38. [38]

    D. Anselmi, Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings, Class. Quant. Grav.20 (2003) 2355 [hep-th/0212013] [02A4] [INSPIRE].

  39. [39]

    D. Anselmi, Properties Of The Classical Action Of Quantum Gravity, JHEP05 (2013) 028 [arXiv:1302.7100] [13A2] [INSPIRE].

  40. [40]

    F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev.52 (1937) 54 [INSPIRE].

  41. [41]

    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE].

  42. [42]

    T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev.133 (1964) B1549 [INSPIRE].

  43. [43]

    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.8 (1996) 1 [INSPIRE].

  44. [44]

    Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troian, Basics of perturbative QCD, World Scientific Publishing (1991) [INSPIRE].

  45. [45]

    T.D. Lee, Particle physics and introduction to field theory, Harwood Academic, Contemp. Concepts Phys.1 (1981) 1 [INSPIRE].

  46. [46]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].

  47. [47]

    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond.A 173 (1939) 211 [INSPIRE].

  48. [48]

    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev.D 16 (1977) 953 [INSPIRE].

  49. [49]

    J. Julve and M. Tonin, Quantum Gravity with Higher Derivative Terms, Nuovo Cim.B 46 (1978) 137 [INSPIRE].

  50. [50]

    E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys.B 201 (1982) 469 [INSPIRE].

  51. [51]

    I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher derivative quantum gravity, Phys. Lett.159B (1985) 269 [INSPIRE].

  52. [52]

    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, Eur. Phys. J.C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].

  53. [53]

    A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J.C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].

  54. [54]

    D. Anselmi, Fakeons, Microcausality And The Classical Limit Of Quantum Gravity, Class. Quant. Grav.36 (2019) 065010 [arXiv:1809.05037] [18A4] [INSPIRE].

  55. [55]

    H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys.B 22 (1970) 397 [INSPIRE].

  56. [56]

    V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett.12 (1970) 312 [INSPIRE].

  57. [57]

    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev.D 6 (1972) 3368 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Damiano Anselmi.

Additional information

ArXiv ePrint: 1909.04955

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anselmi, D. Fakeons, unitarity, massive gravitons, and the cosmological constant. J. High Energ. Phys. 2019, 27 (2019) doi:10.1007/JHEP12(2019)027

Download citation


  • Beyond Standard Model
  • Models of Quantum Gravity
  • Renormalization Regularization and Renormalons