Advertisement

Journal of High Energy Physics

, 2018:127 | Cite as

SUSY enhancement from T-branes

  • Federico Carta
  • Simone GiacomelliEmail author
  • Raffaele Savelli
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We use the F-theoretic engineering of four-dimensional rank-one superconformal field theories to provide a geometric understanding of the phenomenon of supersymmetry enhancement along the RG flow, recently observed by Maruyoshi and Song. In this context, the superpotential deformations responsible for such flows are interpreted as T-brane backgrounds and encoded in the geometry of elliptically-fibered fourfolds. We formulate a simple algebraic criterion to select all supersymmetry-enhancing flows and, without any maximization process, derive the main features of the corresponding \( \mathcal{N} \) = 2 theories in the infrared.

Keywords

D-branes Extended Supersymmetry F-Theory Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Eguchi and K. Hori, N = 2 superconformal field theories in four-dimensions and A-D-E classification, in The mathematical beauty of physics: A memorial volume for Claude Itzykson. Proceedings, Conference, Saclay, France, June 5–7, 1996, pp. 67–82, hep-th/9607125 [INSPIRE].
  5. [5]
    P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP 06 (2018) 156 [arXiv:1710.06469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K. Maruyoshi, E. Nardoni and J. Song, Landscape of Simple Superconformal Field Theories in 4d, arXiv:1806.08353 [INSPIRE].
  10. [10]
    M. Evtikhiev, Studying superconformal symmetry enhancement through indices, JHEP 04 (2018) 120 [arXiv:1708.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Giacomelli, Infrared enhancement of supersymmetry in four dimensions, JHEP 10 (2018) 041 [arXiv:1808.00592] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Apruzzi, F. Hassler, J.J. Heckman and T.B. Rochais, Nilpotent Networks and 4D RG Flows, arXiv:1808.10439 [INSPIRE].
  14. [14]
    J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from Brane Monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor Structure in F-theory Compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa Couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Donagi and M. Wijnholt, Gluing Branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Donagi and M. Wijnholt, Gluing Branes II: Flavour Physics and String Duality, JHEP 05 (2013) 092 [arXiv:1112.4854] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, JHEP 04 (2015) 179 [arXiv:1503.02683] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Cicoli, F. Quevedo and R. Valandro, de Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].
  28. [28]
    F. Carta, F. Marchesano and G. Zoccarato, Fitting fermion masses and mixings in F-theory GUTs, JHEP 03 (2016) 126 [arXiv:1512.04846] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    I. Bena, J. Blabäck, R. Minasian and R. Savelli, There and back again: A T-branes tale, JHEP 11 (2016) 179 [arXiv:1608.01221] [INSPIRE].
  31. [31]
    F. Marchesano and S. Schwieger, T-branes and α-corrections, JHEP 11 (2016) 123 [arXiv:1609.02799] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, Anomalies and Moduli Spaces in 6D SCFTs, JHEP 10 (2017) 158 [arXiv:1612.06399] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J.M. Ashfaque, Monodromic T-Branes And The SO(10)GUT, arXiv:1701.05896 [INSPIRE].
  34. [34]
    L.B. Anderson, J.J. Heckman, S. Katz and L. Schaposnik, T-Branes at the Limits of Geometry, JHEP 10 (2017) 058 [arXiv:1702.06137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    I. Bena, J. Blabäck and R. Savelli, T-branes and Matrix Models, JHEP 06 (2017) 009 [arXiv:1703.06106] [INSPIRE].
  36. [36]
    A. Collinucci, S. Giacomelli and R. Valandro, T-branes, monopoles and S-duality, JHEP 10 (2017) 113 [arXiv:1703.09238] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Cicoli, I. Garcìa-Etxebarria, C. Mayrhofer, F. Quevedo, P. Shukla and R. Valandro, Global Orientifolded Quivers with Inflation, JHEP 11 (2017) 134 [arXiv:1706.06128] [INSPIRE].
  38. [38]
    F. Marchesano, R. Savelli and S. Schwieger, Compact T-branes, JHEP 09 (2017) 132 [arXiv:1707.03797] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Seiberg, IR dynamics on branes and space-time geometry, Phys. Lett. B 384 (1996) 81 [hep-th/9606017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Benvenuti and S. Giacomelli, Supersymmetric gauge theories with decoupled operators and chiral ring stability, Phys. Rev. Lett. 119 (2017) 251601 [arXiv:1706.02225] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan, New N = 1 Dualities, JHEP 06 (2013) 056 [arXiv:1303.0836] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    P. Agarwal, I. Bah, K. Maruyoshi and J. Song, Quiver tails and \( \mathcal{N} \) = 1 SCFTs from M5-branes, JHEP 03 (2015) 049 [arXiv:1409.1908] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996) 278 [hep-th/9605199] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Katz and D. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Alg. Geom. 1 (1992) 449.MathSciNetzbMATHGoogle Scholar
  49. [49]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows, JHEP 02 (2018) 002 [arXiv:1601.00011] [INSPIRE].
  50. [50]
    D. Kutasov, A. Parnachev and D.A. Sahakyan, Central charges and U(1)(R) symmetries in N = 1 superYang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    W. McGovern and W.M. McGovern, Nilpotent orbits in semisimple Lie algebra: an introduction, CRC Press, Boca Raton, FL, U.S.A. (1993).zbMATHGoogle Scholar
  53. [53]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  55. [55]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    A. Hanany and R. Kalveks, Quiver Theories and Formulae for Nilpotent Orbits of Exceptional Algebras, JHEP 11 (2017) 126 [arXiv:1709.05818] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Departamento de Física Teórica and Instituto de Física Teórica UAM-CSICUniversidad Autónoma de MadridMadridSpain
  2. 2.International Center for Theoretical PhysicsTriesteItaly
  3. 3.INFN, Sezione di TriesteTriesteItaly
  4. 4.Dipartimento di Fisica, Università di Roma “Tor Vergata” & INFN — Sezione di Roma2RomaItaly

Personalised recommendations