Advertisement

Journal of High Energy Physics

, 2018:121 | Cite as

NNLOPS accurate predictions for W+W production

  • Emanuele Re
  • Marius Wiesemann
  • Giulia ZanderighiEmail author
Open Access
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract

We present novel predictions for the production of W+W pairs in hadron collisions that are next-to-next-to-leading order accurate and consistently matched to a parton shower (NNLOPS). All diagrams that lead to the process \( pp\to {e}^{-}{\overline{\nu}}_e{\mu}^{+}{\nu}_{\mu }+X \) are taken into account, thereby including spin correlations and off-shell effects. For the first time full NNLOPS accuracy is achieved for a 2 → 4 process. We find good agreement, at the 1σ level, with the W+W rates measured by ATLAS and CMS. The importance of NNLOPS predictions is evident from differential distributions sensitive to soft-gluon effects and from the large impact (10% and more) of including next-to-next-to-leading order corrections on top of MiNLO. We define a charge asymmetry for the W bosons and the leptons in W+W production at the LHC, which is sensitive to the W polarizations and hence can be used as a probe of new physics.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CDF collaboration, T. Aaltonen et al., Measurement of the W + W production cross section and search for anomalous W W γ and W W Z couplings in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 104 (2010) 201801 [arXiv:0912.4500] [INSPIRE].
  2. [2]
    D0 collaboration, V.M. Abazov et al., Measurements of W W and W Z production in W + jets final states in pp collisions, Phys. Rev. Lett. 108 (2012) 181803 [arXiv:1112.0536] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous W W Z and W W γ couplings, Phys. Rev. D 87 (2013) 112001 [Erratum ibid. D 88 (2013) 079906] [arXiv:1210.2979] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous W W γ and W W Z couplings, Eur. Phys. J. C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the W + W production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-033 (2014).
  6. [6]
    ATLAS collaboration, Measurement of total and differential W + W production cross sections in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings, JHEP 09 (2016) 029 [arXiv:1603.01702] [INSPIRE].
  7. [7]
    CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=8 \) TeV and limits on anomalous gauge couplings, Eur. Phys. J. C 76 (2016) 401 [arXiv:1507.03268] [INSPIRE].
  9. [9]
    ATLAS collaboration, Measurement of the W + W production cross section in pp collisions at a centre-of-mass energy of \( \sqrt{s}=13 \) TeV with the ATLAS experiment, Phys. Lett. B 773 (2017) 354 [arXiv:1702.04519] [INSPIRE].
  10. [10]
    ucms Collaboration, Measurement of the W W cross section pp collisions at \( \sqrt{s}= 13 \) TeV, CMS-PAS-SMP-16-006 (2016).
  11. [11]
    ATLAS, CDF, CMS, D0 collaboration, Diboson Production at LHC and Tevatron, Int. J. Mod. Phys. Conf. Ser. 31 (2014) 1460279 [arXiv:1403.1415] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    C. Frye, M. Freytsis, J. Scholtz and M.J. Strassler, Precision diboson observables for the LHC, JHEP 03 (2016) 171 [arXiv:1510.08451] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Butter et al., The gauge-Higgs legacy of the LHC run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Z. Zhang, Time to go beyond triple-gauge-boson-coupling interpretation of W pair production, Phys. Rev. Lett. 118 (2017) 011803 [arXiv:1610.01618] [INSPIRE].
  15. [15]
    D.R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC, Rev. Mod. Phys. 89 (2017) 035008 [arXiv:1610.07572] [INSPIRE].
  16. [16]
    J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W + W production at the LHC including fermionic operators, Phys. Rev. D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].
  17. [17]
    A. Falkowski et al., Anomalous triple gauge couplings in the effective field theory approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].
  18. [18]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].
  19. [19]
    R. Franceschini et al., Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Liu and L.-T. Wang, Precision measurement with diboson at the LHC, arXiv:1804.08688 [INSPIRE].
  21. [21]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  22. [22]
    ATLAS collaboration, Observation and measurement of Higgs boson decays to W W with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE].
  23. [23]
    ATLAS collaboration, Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to W W eνμν with the ATLAS detector at \( \sqrt{s}=8 \) TeV, JHEP 08 (2016) 104 [arXiv:1604.02997] [INSPIRE].
  24. [24]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  25. [25]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
  26. [26]
    CMS collaboration, Measurement of Higgs boson production and properties in the W W decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
  27. [27]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [Erratum ibid. C 76 (2016) 152] [arXiv:1506.05669] [INSPIRE].
  28. [28]
    CMS collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at \( \sqrt{s}=8 \) TeV using HW W decays, JHEP 03 (2017) 032 [arXiv:1606.01522] [INSPIRE].
  29. [29]
    R.W. Brown and K.O. Mikaelian, W + W and Z 0 Z 0 pair production in e + e , pp, \( p\overline{p} \) colliding beams, Phys. Rev. D 19 (1979) 922 [INSPIRE].
  30. [30]
    J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].
  31. [31]
    S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].
  32. [32]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  33. [33]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].
  34. [34]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].
  35. [35]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [Erratum ibid. D 94 (2016) 099902] [arXiv:1307.4331] [INSPIRE].
  38. [38]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W → 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].
  39. [39]
    B. Biedermann et al., Next-to-leading-order electroweak corrections to ppW + W → 4 leptons at the LHC, JHEP 06 (2016) 065 [arXiv:1605.03419] [INSPIRE].
  40. [40]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [INSPIRE].
  41. [41]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order predictions for W W + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [INSPIRE].
  42. [42]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to pp/ppW W + jet + X including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].
  43. [43]
    J.M. Campbell, D.J. Miller and T. Robens, Next-to-Leading order predictions for W W + jet production, Phys. Rev. D 92 (2015) 014033 [arXiv:1506.04801] [INSPIRE].
  44. [44]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].
  45. [45]
    N. Greiner et al., NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].
  46. [46]
    F. Febres Cordero, P. Hofmann and H. Ita, W + W + 3-jet production at the large hadron collider in next-to-leading-order QCD, Phys. Rev. D 95 (2017) 034006 [arXiv:1512.07591] [INSPIRE].
  47. [47]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon production of gauge bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].
  48. [48]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].
  49. [49]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W W background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].
  50. [50]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].
  51. [51]
    J.M. Campbell, R.K. Ellis and C. Williams, Gluon-gluon contributions to W + W production and Higgs interference effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].
  52. [52]
    T. Melia, K. Melnikov, R. Rontsch, M. Schulze and G. Zanderighi, Gluon fusion contribution to W + W + jet production, JHEP 08 (2012) 115 [arXiv:1205.6987] [INSPIRE].
  53. [53]
    F. Caola et al., Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].
  55. [55]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].
  56. [56]
    F. Caola et al., QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    T. Gehrmann et al., W + W production at hadron colliders in next to next to leading order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].
  58. [58]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].
  59. [59]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to V\ V \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].
  60. [60]
    F. Caola et al., Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q{\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].
  62. [62]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  63. [63]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].
  66. [66]
    P. Nason and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].
  67. [67]
    J. Bellm et al., Anomalous coupling, top-mass and parton-shower effects in W + W production, JHEP 05 (2016) 106 [arXiv:1602.05141] [INSPIRE].
  68. [68]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  69. [69]
    F. Campanario, M. Rauch and S. Sapeta, W + W production at high transverse momenta beyond NLO, Nucl. Phys. B 879 (2014) 65 [arXiv:1309.7293] [INSPIRE].
  70. [70]
    T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].
  71. [71]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    F. Cascioli et al., Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].
  77. [77]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  78. [78]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  80. [80]
    K. Hamilton, T. Melia, P.F. Monni, E. Re and G. Zanderighi, Merging W W and W W + jet with MINLO, JHEP 09 (2016) 057 [arXiv:1606.07062] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate next-to-next-to-leading order results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].
  82. [82]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154 [arXiv:1507.02565] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    S. Dawson, P. Jaiswal, Y. Li, H. Ramani and M. Zeng, Resummation of jet veto logarithms at N 3 LL a + NNLO for W + W production at the LHC, Phys. Rev. D 94 (2016) 114014 [arXiv:1606.01034] [INSPIRE].
  84. [84]
    M. Grazzini, Soft-gluon effects in W W production at hadron colliders, JHEP 01 (2006) 095 [hep-ph/0510337] [INSPIRE].
  85. [85]
    Y. Wang et al., Transverse-momentum resummation for gauge boson pair production at the hadron collider, Phys. Rev. D 88 (2013) 114017 [arXiv:1307.7520] [INSPIRE].
  86. [86]
    P. Meade, H. Ramani and M. Zeng, Transverse momentum resummation effects in W + W measurements, Phys. Rev. D 90 (2014) 114006 [arXiv:1407.4481] [INSPIRE].
  87. [87]
    P. Jaiswal and T. Okui, Explanation of the W W excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].
  88. [88]
    T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].
  89. [89]
    P.F. Monni and G. Zanderighi, On the excess in the inclusive \( {W}^{+}{W}^{-}\to {l}^{+}{l}^{-}\nu \overline{\nu} \) cross section, JHEP 05 (2015) 013 [arXiv:1410.4745] [INSPIRE].
  90. [90]
    M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J. C 78 (2018) 537 [arXiv:1711.06631] [INSPIRE].
  91. [91]
    M. Grazzini, S. Kallweit, M. Wiesemann Matrix: “Munich Automates qT subtraction and Resummation to Integrate X-sections, http://matrix.hepforge.org/.
  92. [92]
    K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Karlberg, E. Re and G. Zanderighi, NNLOPS accurate Drell-Yan production, JHEP 09 (2014) 134 [arXiv:1407.2940] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    W. Astill, W. Bizon, E. Re and G. Zanderighi, NNLOPS accurate associated HW production, JHEP 06 (2016) 154 [arXiv:1603.01620] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].
  97. [97]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].
  98. [98]
    S. Alioli, F. Caola, G. Luisoni and R. Röntsch, ZZ production in gluon fusion at NLO matched to parton-shower, Phys. Rev. D 95 (2017) 034042 [arXiv:1609.09719] [INSPIRE].
  99. [99]
    S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 22ν diboson signatures at the LHC, JHEP 11 (2017) 120 [arXiv:1705.00598] [INSPIRE].
  100. [100]
    M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, Phys. Lett. B 731 (2014) 204 [arXiv:1309.7000] [INSPIRE].
  101. [101]
    M. Grazzini, S. Kallweit and D. Rathlev, W γ and Zγ production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].
  103. [103]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].
  104. [104]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, Phys. Lett. B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].
  105. [105]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 05 (2017) 139 [arXiv:1703.09065] [INSPIRE].
  106. [106]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  109. [109]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  110. [110]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  111. [111]
    S. Kallweit et al., NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  112. [112]
    S. Kallweit et al., NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].ADSGoogle Scholar
  113. [113]
    S. Kallweit, Munich: MUlti-chaNnel Integrator at Swiss (CH) precision —An automated parton level NLO generator.Google Scholar
  114. [114]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER — A Fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].
  115. [115]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a Fortran-based Complex One-Loop library in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].
  116. [116]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  118. [118]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    F. Buccioni, S. Pozzorini and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C 78 (2018) 70 [arXiv:1710.11452] [INSPIRE].
  120. [120]
    F. Cascioli, J. Lindert, P. Maierhöfer and S. Pozzorini, The OpenLoops one-loop generator, http://openloops.hepforge.org.
  121. [121]
    C. Anastasiou, E.W.N. Glover and M.E. Tejeda-Yeomans, Two loop QED and QCD corrections to massless fermion boson scattering, Nucl. Phys. B 629 (2002) 255 [hep-ph/0201274] [INSPIRE].
  122. [122]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q}\to {W}^{\pm}\gamma \) and \( q\overline{q}\to {Z}^0\gamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].
  123. [123]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].
  124. [124]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The VVamp project, http://vvamp.hepforge.org.
  125. [125]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    G. Cullen et al., GoSAm-2.0: a tool for automated one-loop calculations within the standard model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  128. [128]
    W. Astill, W. Bizon, E. Re and G. Zanderighi, NNLOPS accurate associated HZ production with NLO decay \( H\to b\overline{b} \), Submitted to: JHEP (2018) [arXiv:1804.08141] [INSPIRE].
  129. [129]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].
  130. [130]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
  131. [131]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  132. [132]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  133. [133]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  134. [134]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  135. [135]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  136. [136]
    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  137. [137]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  138. [138]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
  139. [139]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    C. Anastasiou et al., Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440.Google Scholar
  142. [142]
    S. Marzani et al., Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].
  143. [143]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].
  144. [144]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  145. [145]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].
  146. [146]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].
  147. [147]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, JHEP 11 (2014) 150 [arXiv:1408.6836] [INSPIRE].ADSCrossRefGoogle Scholar
  148. [148]
    E. Bagnaschi et al., Resummation ambiguities in the Higgs transverse-momentum spectrum in the standard model and beyond, JHEP 01 (2016) 090 [arXiv:1510.08850] [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    H. Mantler and M. Wiesemann, Hadronic Higgs production through NLO + PS in the SM, the 2HDMand the MSSM, Eur. Phys. J. C 75 (2015) 257 [arXiv:1504.06625] [INSPIRE].
  150. [150]
    M. Buschmann et al., Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    R. Frederix, S. Frixione, E. Vryonidou and M. Wiesemann, Heavy-quark mass effects in Higgs plus jets production, JHEP 08 (2016) 006 [arXiv:1604.03017] [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    S. Höche, Y. Li and S. Prestel, Higgs-boson production through gluon fusion at NNLO QCD with parton showers, Phys. Rev. D 90 (2014) 054011 [arXiv:1407.3773] [INSPIRE].
  153. [153]
    S. Catani and B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].
  154. [154]
    LHCb collaboration, Measurement of forward Weν production in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 10 (2016) 030 [arXiv:1608.01484] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Emanuele Re
    • 1
    • 2
  • Marius Wiesemann
    • 1
  • Giulia Zanderighi
    • 1
    Email author
  1. 1.Theoretical Physics DepartmentCERNGenevaSwitzerland
  2. 2.LAPTh, CNRS, Université Savoie Mont BlancAnnecyFrance

Personalised recommendations