Advertisement

Journal of High Energy Physics

, 2018:116 | Cite as

Roton-phonon excitations in Chern-Simons matter theory at finite density

  • S. Prem Kumar
  • Dibakar Roychowdhury
  • Stanislav Stratiev
Open Access
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract

We consider SU(N) Chern-Simons theory coupled to a scalar field in the fundamental representation at strictly zero temperature and finite chemical potential for the global U(1)B particle number or flavour symmetry. In the semiclassical regime we identify a Bose condensed ground state with a vacuum expectation value (VEV) for the scalar accompanied by noncommuting background gauge field matrix VEVs. These matrices coincide with the droplet ground state of the Abelian quantum Hall matrix model. The ground state spontaneously breaks U(1)B and Higgses the gauge group whilst preserving spatial rotations and a colour-flavour locked global U(1) symmetry. We compute the perturbative spectrum of semiclassical fluctuations for the SU(2) theory and show the existence of a single massless state with a linear phonon dispersion relation and a roton minimum (and maximum) determining the Landau critical superfluid velocity. For the massless scalar theory with vanishing self interactions, the semiclassical dispersion relations and location of roton extrema take on universal forms.

Keywords

Chern-Simons Theories Spontaneous Symmetry Breaking Duality in Gauge Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  3. [3]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    Y. Dandekar, M. Mandlik and S. Minwalla, Poles in the S-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics, JHEP 04 (2015) 102 [arXiv:1407.1322] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large N Chern-Simons-Matter Theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia and S. Yokoyama, Phases of large N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Takimi, Duality and higher temperature phases of large N Chern-Simons matter theories on S 2 × S 1, JHEP 07 (2013) 177 [arXiv:1304.3725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Geracie, M. Goykhman and D.T. Son, Dense Chern-Simons Matter with Fermions at Large N, JHEP 04 (2016) 103 [arXiv:1511.04772] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    G. Gur-Ari, S.A. Hartnoll and R. Mahajan, Transport in Chern-Simons-Matter Theories, JHEP 07 (2016) 090 [arXiv:1605.01122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    L.D. Landau, The theory of superfluidity of helium II, J. Phys. (USSR) 5 (1941) 71.zbMATHGoogle Scholar
  21. [21]
    A. Schmitt, Introduction to Superfluidity: Field-theoretical approach and applications, Lect. Notes Phys. 888 (2015) 1 [arXiv:1404.1284] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Spontaneous rotational symmetry breaking and roton - like excitations in gauged σ-model at finite density, Phys. Lett. B 581 (2004) 82 [Erratum ibid. B 734 (2014) 407] [hep-ph/0311025] [INSPIRE].
  23. [23]
    A.P. Polychronakos, Quantum Hall states as matrix Chern-Simons theory, JHEP 04 (2001) 011 [hep-th/0103013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    L. Susskind, The Quantum Hall fluid and noncommutative Chern-Simons theory, hep-th/0101029 [INSPIRE].
  25. [25]
    S. Minwalla and S. Yokoyama, Chern Simons Bosonization along RG Flows, JHEP 02 (2016) 103 [arXiv:1507.04546] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H.B. Nielsen and S. Chadha, On How to Count Goldstone Bosons, Nucl. Phys. B 105 (1976) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance, Phys. Rev. Lett. 108 (2012) 251602 [arXiv:1203.0609] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L.P. Pitaevskii, Layered structure of 4He with supercritical motion, JETP 39 (1984) 511.Google Scholar
  29. [29]
    D.N. Voskresenskii, Condensate with finite momentum in a moving medium, JETP 77 (1993) 917.ADSGoogle Scholar
  30. [30]
    D. Tong, A Quantum Hall fluid of vortices, JHEP 02 (2004) 046 [hep-th/0306266] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D. Tong and C. Turner, Quantum Hall effect in supersymmetric Chern-Simons theories, Phys. Rev. B 92 (2015) 235125 [arXiv:1508.00580] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Markov, A. Marshakov and A. Yung, Non-Abelian vortices in N = 1* gauge theory, Nucl. Phys. B 709 (2005) 267 [hep-th/0408235] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Auzzi and S.P. Kumar, Non-Abelian k-Vortex Dynamics in N = 1* theory and its Gravity Dual, JHEP 12 (2008) 077 [arXiv:0810.3201] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    R. Auzzi and S.P. Kumar, Quantum Phases of a Vortex String, Phys. Rev. Lett. 103 (2009) 231601 [arXiv:0908.4278] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    R. Auzzi and S.P. Kumar, Non-Abelian Vortices at Weak and Strong Coupling in Mass Deformed ABJM Theory, JHEP 10 (2009) 071 [arXiv:0906.2366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P. Castorina, G. Riccobene and D. Zappala, Non-commutative dynamics and roton-like spectra in bosonic and fermionic condensates, Phys. Lett. A 337 (2005) 463 [hep-th/0405093] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Choudhury et al., Bose-Fermi Chern-Simons Dualities in the Higgsed Phase, JHEP 11 (2018) 177 [arXiv:1804.08635] [INSPIRE].CrossRefzbMATHGoogle Scholar
  38. [38]
    S.P. Kumar and S. Stratiev, work in progress.Google Scholar
  39. [39]
    S. Hands, Four fermion models at nonzero density, Nucl. Phys. A 642 (1998) 228 [hep-lat/9806022] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • S. Prem Kumar
    • 1
  • Dibakar Roychowdhury
    • 1
  • Stanislav Stratiev
    • 1
  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.

Personalised recommendations